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Treating Stimuli as a Random Factor in Social Psychology: A New and
Comprehensive Solution to a Pervasive but Largely Ignored Problem
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Throughout social and cognitive psychology, participants are routinely asked to respond in some way to
experimental stimuli that are thought to represent categories of theoretical interest. For instance, in
measures of implicit attitudes, participants are primed with pictures of specific African American and
White stimulus persons sampled in some way from possible stimuli that might have been used. Yet
seldom is the sampling of stimuli taken into account in the analysis of the resulting data, in spite of
numerous warnings about the perils of ignoring stimulus variation (Clark, 1973; Kenny, 1985; Wells &
Windschitl, 1999). Part of this failure to attend to stimulus variation is due to the demands imposed by
traditional analysis of variance procedures for the analysis of data when both participants and stimuli are
treated as random factors. In this article, we present a comprehensive solution using mixed models for the
analysis of data with crossed random factors (e.g., participants and stimuli). We show the substantial
biases inherent in analyses that ignore one or the other of the random factors, and we illustrate the
substantial advantages of the mixed models approach with both hypothetical and actual, well-known data
sets in social psychology (Bem, 2011; Blair, Chapleau, & Judd, 2005; Correll, Park, Judd, & Wittenbrink,

2002).
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The issue of stimulus sampling has a long but somewhat ne-
glected history in social cognitive psychology (Brunswik, 1955;
Kenny, 1985; Wells & Windschitl, 1999). In fact, some of the
harshest research critiques come when conclusions are reached, for
instance, about reactions to African Americans when an experi-
mental participant has encountered a single African American as a
stimulus in an experimental interaction. Most researchers do not
make this mistake in its most extreme form, as they generally
attempt to include some reasonable sample of stimuli in order to
suggest generalization.

Seldom, however, is the sampling of stimuli explicitly taken into
account in the analysis of social cognitive data. Instead, the stan-
dard practice is to average the responses of individual participants
across stimuli and analyze these resulting averages, with partici-
pant as the sole random factor in the design.

This practice persists in spite of the now-classic warning given
by Clark (1973) nearly 40 years ago, who argued at the time that
many “statistically significant” effects in cognitive psychology do
not permit robust generalization across stimuli, when stimuli are in
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fact treated as a random factor in the analysis. At that time, the
standard analytic fix, assuming one wanted to treat both partici-
pants and stimuli as random effects in an analysis, was to calculate
quasi-F statistics, following the exposition in Green and Tukey
(1960), Winer (1971), and elsewhere, based on the full variance
partitioning of experimental designs with orthogonal experimental
factors (that include participants and stimuli).

Since that time, the use of experimental paradigms with samples
of stimuli to which participants react has only increased in prev-
alence, especially with the abundant recent interest in examining
response latency measures as indicators of implicit responses,
which are generally quite unreliable unless one employs a large
number of trials, involving different stimuli, to which responses
are given (e.g., implicit association test, affective priming, lexical
decision task, affect misattribution task, shooter task, and so on).

Part of the reason why Clark’s warnings have gone unheeded is
because of the inherent limitations of using designs in which
traditional analysis of variance (ANOVA) decomposition can pro-
ceed and associated quasi-F statistics computed. Such designs
generally require complete data with orthogonal effects of the
various crossed and nested factors (i.e., equal n) and no continuous
covariates. And for each new design, relatively complex calcula-
tions are necessary to derive the expected mean squares (Cornfield
& Tukey, 1956; Winer, 1971) and from these, the appropriate
quasi-F statistics.

This failure to adopt analyses that treat participants and stimuli
as simultaneous random effects comes at a substantial cost. Anal-
yses that rely on averaging across stimuli to obtain within-
participant cell means ignore systematic variation between exper-
imental stimuli, and this variation may contribute to statistically
significant mean differences that may not replicate in studies with
different stimulus samples. It has been shown that the failure to
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treat stimuli as a random effect can cause the empirical Type 1
error rate for an analysis to exceed the nominal alpha level by more
than an order of magnitude, depending on the details of the
experimental design (Forster & Dickinson, 1976; Rietveld & van
Hout, 2007; Wickens & Keppel, 1983).

In recent years, alternative statistical techniques have been de-
veloped that easily and effectively address the problems for which
quasi-F ratios were proposed (Baayen, Davidson, & Bates, 2008).
Further, these mixed effects models offer many additional advan-
tages over both traditional repeated-measures ANOVA and
quasi-F statistics. These include the ability to handle incomplete
and unbalanced data, the ability to easily accommodate continuous
as well as categorical predictors, avoidance of information loss due
to prior averaging over stimuli or participants, principled unbiased
handling of incomplete and/or outlying cases, a simple empirical
solution to the problem of when effects ought to be considered
fixed or random, and their widespread availability and relative ease
of use (see Baayen, 2008, chapter 7).

We have three major purposes in writing this article. The first is
to underline once again the pitfalls of not treating both participants
and stimuli as random effects. We discuss these pitfalls in the
context of a design in which multiple participants are each exposed
to multiple stimuli and these stimuli are in one of two experimental
conditions for all participants. Thus, participants are crossed with
treatment condition, and in each treatment condition, there are
multiple stimuli. We discuss analyses that ignore one or the other
of the random effects in this design and show through a series of
simulations the substantial costs of doing so.

Second, still in the context of this design, we briefly review the
classic quasi-F solution to testing the treatment effect while treat-
ing both participants and stimuli as random. We then introduce the
newer and more general approach based on mixed models with
multiple crossed random effects. In addition to detailing this ap-
proach and its specification, we explore both its Type I error rates,
given no treatment effects, and its associated statistical power.

Finally, we turn to the benefits of the mixed effects modeling
approach, illustrating with some well-known social cognition data
sets the ability of mixed effects models to easily handle missing
data, to accommodate treatment variables that vary continuously
rather than discretely, and to provide meaningful estimates of
variance components that are often of great theoretical interest.

Ilustrative Nested-Stimuli Design and Typical
Analyses

As just discussed, we start with a ubiquitous but simple design
in which each participant responds to several different stimuli that
are nested under two levels of an independent variable of interest.
For example, imagine that participants are asked to make judg-
ments about African American and White males, with each stim-
ulus person described with a name and photo. In this design, the
independent variable of interest, race of the stimulus person, is
crossed with each participant and the individual stimulus persons
are nested under it.

In the context of this design, there are two random factors
(participants and stimuli) and one fixed factor (stimulus race).
Although there is ambiguity in the literature on how best to define
the random—fixed distinction (Gelman & Hill, 2007, p. 245), for
now we define these terms as they have been conventionally in the

ANOVA literature (Green & Tukey, 1960; Winer, 1971). Accord-
ing to this definition, random factors are factors whose levels are
sampled from some larger population of levels across which the
researcher wishes to generalize, whereas fixed factors are those
whose levels are exhaustive. To say that both participants and
stimuli are random factors is to say that we have two different
samples in this study, one of participants and one of stimuli, drawn
in theory from populations of interest. Our participants are sam-
pled from some population to which we would presumably like to
make inferences. Likewise, our stimulus photographs are also
sampled in theory from some population to which we would also
like to make inferences. In both cases, although the populations
may be only imprecisely specified, it is clearly the case that our
two samples do not exhaust the universe of potential participants
and stimuli that might be used.'

Data from such a design are typically analyzed ignoring one or
the other random effects. The most typical analysis treats partici-
pants as random but ignores the random effects due to stimuli. This
analysis involves computing two mean scores for each participant,
one averaging that participant’s judgments across all African
American stimuli and one averaging that participant’s judgments
across all White stimuli. Then one conducts a repeated-measures
ANOVA, treating stimulus person race as a within-participant
factor, to estimate and test the significance of the mean difference
in judgments as a function of race. We refer to this most typical
analysis as the by-participant analysis.

A much less typical analysis is one that ignores the random
effects due to participants. This analysis involves computing a
mean for each stimulus, averaging across all participants. Then one
conducts a between-stimuli analysis of variance on these means to
ask whether the mean judgments given to the African American
stimuli differ from the mean judgments given to the White stimuli,
treating stimuli as the unit of analysis. We refer to this analysis as
the by-stimulus analysis.

In order to understand the statistical pitfalls of these two anal-
yses that ignore one or the other of the random effects in the
design, it is helpful to examine the expected values of the mean
squares for all sources of variation in data from this design. These
expected mean squares are given in Table 1. We will not present
the mathematical derivation of these expected mean squares (see
Cornfield & Tukey, 1956; Green & Tukey, 1960; Winer, 1971).
Instead we will focus on developing an intuitive understanding of
what the terms of these expected mean squares are telling us and
of the serious consequences that result from ignoring certain
variance components underlying them by analyzing aggregated
within-participant means (the by-participant analysis) or within-
stimulus means (the by-stimulus analysis).

' As we will develop at a later point in this article (see Footnote 9), a
more complete definition of fixed versus random factors specifies not only
the sampling of its levels, as in the analysis of variance literature, but also
whether the effects of that factor vary. For instance, to say stimuli is a
random factor means both that we select only a sample of stimuli and that
different stimuli have different effects (i.e., they make a difference in the
response measured). When the effects of a factor do not vary, then
ultimately it can be treated as fixed even if in fact its levels were sampled.
This then permits tests of whether factors ultimately should be treated as
fixed or random, which mixed models allow, as we previously suggested.
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Table 1

Expected Mean Squares from a Design in which Stimuli are Nested Under Condition and Participants are Crossed with Condition,
with Stimulus as Fixed and Participants Random, Participants as Fixed and Stimuli Random, or Participants and Stimuli Both

as Random
Stimulus factor fixed/ Participant factor Participant and stimulus factors both
Label Source of variance Degrees of freedom  participants random fixed/stimuli random random

C Condition (r) r—1 02 + @O + PO o+ pog(c) + pqo o+ O'f,xs(c) + qop + P‘Tg(o + pqo
S(C) Stimuli within

Condition (g) rig—1) o, + 012°><S(C) + po'?vw) o; + pU?s(C) o, + 0’?’><S(C) + po—g‘(C)
P Participants (p) p—1 o+ rq(rl% o+ cr,z,xs(c) +rqop ol + O'ixs(c) + rqop
PXC Participants by

Condition r=D(p-1 07 + g0y 02+ Opsesic) F 40pxc T + Oprsiy + 40pc
P X S(C) Participants by Stimuli

within Condition rp—1(@—1
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We assume that we have p Participants and ¢ Stimuli within
each level of Condition, and r Conditions (in the race design, r =
2). In addition to these three sources of variance, we also have the
Participant X Condition interaction (i.e., different participants may
show different magnitudes of the condition difference), the Par-
ticipant X Stimulus interaction (i.e., participants may respond
idiosyncratically to particular stimuli), and residual error variance.
With each participant responding to each stimulus only once, in
this design the Participant X Stimulus interaction is confounded
with the residual error variance. Each source of variance has a
mean square associated with it, and these mean squares, in turn,
have expected values that are functions of the six underlying
variance components. These are the residual error variance o2 as
well as a variance component uniquely due to each source of
variation in the data, with the source denoted in subscript.> Notice
that the variance components expected to underlie each mean
square depend on whether we consider Participants and/or Stimuli
to be random factors. The fourth and fifth columns give the
variance components if either Stimuli or Participants are not
random, respectively. The sixth column gives the variance com-
ponents if they are both random. It is this last column on which we
focus, because we assume that both factors are in fact random, and
we want to examine the biases that ensue from the by-participant
analysis or the by-stimulus analysis.

An unbiased F test of the Condition effect involves choosing a
denominator, or error term, that includes all of the variance com-
ponents that underlie the Condition mean square except for the
variance component due to Condition, oz. The resulting F ratio
then tests the null hypothesis that 0% equals 0. The by-participant
analysis, based on participant means and ignoring the variation due
to stimuli, involves a repeated-measures ANOVA, analyzing the
mean difference between conditions within participants. The re-
sulting F ratio is the ratio of the mean square (MS) due to
Condition and the mean square due to Participants X Condition:

If stimuli are in fact a fixed factor (column 4 of the table), then the
expected values for the numerator and denominator of this F ratio
are

0, + qOpxc + pqoc
P =T g
As a result, the numerator and denominator have different ex-
pected values only if the variance due to condition is not zero.
Accordingly, if stimuli are fixed, this analysis is appropriate,
permitting generalization to other studies with different partici-
pants but the same stimuli.

On the other hand, if stimuli are in fact a random effect (column
6), then the expected values for the numerator and denominator of
this F ratio are

2 2 2 2 2
0, T Opxsic) T 40pxc T POsc) + Pgoc

Fl,(p—l) = (1)

0'3 + Ui’xs(c) + qo—%’xc
In the absence of any condition effect (i.e., 0% = 0), the numerator
and denominator do not have the same expected values. The
expected value of the numerator will be larger than the expected
value of the denominator as a function of the number of partici-
pants (p) and the magnitude of the variation between Stimuli
within Condition, o3, leading to alpha inflation.

In a practical sense, what this means is that the by-participant
analysis in any one study will yield a positively biased F' for the
condition effect, assuming stimuli are random, to the extent that
the variation between stimuli within conditions is large, among
other factors. To provide a more intuitive understanding of this
bias, let us assume that there is no condition effect. In a particular
study, however, only a sample of stimuli are included, and because
of this stimulus sampling, it is extremely likely that those in one
condition may elicit somewhat different scores on average across
the participants than those in the other condition. Hence, even if
there were no true condition difference, the sampling of stimuli in
any one study would undoubtedly yield some small condition
difference in that particular study. As the number of participants

2 As we have said, in this design where each participant responds only
once to each stimulus, the variance due to the Participant X Stimulus
interaction is confounded with the residual error variance. Nevertheless, in
Table 1 and the formulas that follow, we keep these terms separate in the
interest of generality to situations where there are replications of each
Participant X Stimulus observation.
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increases, this small condition difference, due to stimulus sam-
pling, will loom larger and larger. Additionally, the bias that
results from stimulus sampling in any one study will of course be
greater when the number of stimuli is relatively small.> Hence, the
by-participant analysis will yield Fs that are too large if in fact
stimuli are random. This bias increases as the variation between
stimuli, Ug(c), increases, as this makes larger random condition
differences more likely. Additionally it increases as the number of
participants increases and as the number of stimuli decreases.

Although not routinely employed by social psychologist, the
by-stimulus analysis is also biased, albeit by different factors. As
already discussed, in this analysis one collapses across partici-
pants, computing a mean judgment for each stimulus. Then one
conducts a between-stimulus analysis of variance to test whether
the mean judgments of stimuli in one condition differ from the
mean judgments of stimuli in the other. The resulting F is the ratio
of the mean square due to Condition and the mean square due to
Stimuli within condition:

Fiag-n = MSo,

Parallel to the analysis that treats stimuli as a fixed factor, this
analysis implicitly assumes participants to be a fixed factor (col-
umn 5 of Table 1), permitting generalization to future studies
involving different samples of stimuli but the same participants.
The assumption of participants as a fixed factor is clearly an
assumption with which most social psychologists would not be
happy.

From the sixth column of Table 1, we can see that the numerator
and denominator of this F' ratio will have the following expected
values, given that both participants and stimuli are random

2 2 2 2 2
0, T Opxsic) T 40pxc T PO T Pgoc

Fiog-n= (2

o, + U%xs(c) + I’Ug(c)
And again the numerator and denominator of this F ratio do not
have the same expected values in the absence of a condition effect.
The expected value of the numerator will exceed the expected
value of the denominator as a function of the number of Stimuli (¢)
and the magnitude of the Participant X Condition variance com-
ponent (07 ), again leading to alpha inflation.

In a practical sense, what this means is that the by-stimulus
analysis in any one study will yield a positively biased F' for the
condition effect to the extent that there is variation in the magni-
tude of the condition difference from participant to participant,
again assuming participants to be random. To provide a more
intuitive understanding of this bias, let us again assume that there
really is no condition effect (i.e., across all possible participants,
the mean condition difference is zero). In a particular study,
however, only a sample of participants are included and because of
this participant sampling, it is extremely likely that the average
condition difference across participants will not be exactly zero in
that particular study. Some participants will show a condition
difference in one direction and some in the other. And when one
collapses across them, the average condition difference will not be
zero simply because only a sample of participants has been used.
As the number of stimuli increases, this small condition difference,
due to participant sampling, will loom larger and larger. Addition-
ally, the bias that results from participant sampling in any one

study will of course be greater when the number of participants is
relatively small.* Hence, the by-stimulus analysis will yield Fs that
are too large if in fact participants are random. This bias will
increase as the variation in the condition difference between par-
ticipants (0. ) increases, again because this makes larger ran-
dom condition differences more likely. Additionally it will in-
crease as the number of stimuli increases and as the number of
participants decreases.

Type 1 Error Rates for By-Participant and By-Stimuli
Analyses

To demonstrate these conclusions and illustrate the approximate
magnitude of alpha inflation that an experimenter might expect to
introduce in his or her analysis by inappropriately treating partic-
ipants or stimuli as fixed rather than random effects, we present the
results of a Monte Carlo simulation of the experimental design
discussed in the previous section. In this design, as in the previous
examples, stimuli are nested under two treatment conditions while
participants are crossed with stimuli and treatment conditions. This
represents a typical “within participants” design that one would
encounter in the social cognitive literature.

We varied two aspects of the experimental design orthogonally
across all simulated experiments: the number of participants in the
experiment and the number of experimental stimuli used in total
across the two conditions,” both of which ranged independently
from 10 to 90 in steps of 20, resulting in a total of 25 experimental
designs. Each cell of this simulation matrix consisted of 10,000
simulations, for a total of 250,000 simulated experiments. The
variance components were held constant across the initial simula-
tions at 0, = 16, 07wy = 0, 0p = Opc = 05y = 4, and the
true Condition difference was set at zero.® The data from these
simulated experiments were analyzed with both traditional by-
participant and by-stimulus analyses as described in the previous
section, with alpha = .05. We note that our choice of the magni-
tude of the variance components is arbitrary and that the relevant
feature of the variance components in any analysis is their relative
magnitudes. The purpose of these simulations is to give a general
illustration of the degree of bias associated with ignoring random
effects for a reasonable set of variance components and in partic-
ular to show how this bias varies as a function of the two sample
sizes.

The results of the simulation are given in Table 2. In these
simulated experiments, the standard by-participant analysis of
variance showed a remarkable degree of positive bias. Empirical
Type 1 error rates for this analysis ranged from .086 in the best

3 Note that goa, is found in both the numerator and denominator of
Equation 1. Hence with smaller g, the bias due to the presence of cé(c) in
the numerator increases.

* Parallel to the explanation in Footnote 3, p(r_%(c) is found in both the
numerator and denominator of Equation 2. Hence, with smaller p, the bias
due to the presence of 0%, in the numerator increases.

5 We assume that this total number of stimuli is divided equally between
the two conditions. Accordingly, the total number of stimuli is equal to 2¢,
using the definition of ¢ from the earlier variance decomposition.

¢ Again, the variance component due to the Participant X Stimulus
interaction is set to zero because it is confounded with the residual error
variance.
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Table 2
Empirical Type 1 Error Rates for By-Participant and
By-Stimulus Analyses

No. of stimuli

No. of participants/

Type of analysis 10 30 50 70 90
By-participant
10 187 133 105 .095 .086
30 381 .288 233 .194 .170
50 494 394 315 279 241
70 .560 AS51 392 335 .296
90 .616 .506 442 385 351
By-stimulus
10 .070 .108 150 182 221
30 .053 074 .093 .105 130
50 .055 .065 .078 .088 .100
70 .049 .058 .072 078 .085
90 .055 .058 .061 .070 .077

case to .616 in the worst case, with an average error rate of .317,
over six times the nominal alpha level. Consistent with the ex-
pected mean square formula for this analysis (Equation 1), increas-
ing the number of participants led to greater positive bias in the
error rate. In the worst case, with 90 participants, the average error
rate was .460; while in the best case, with only 10 participants, the
average error rate was still substantially inflated at .121. Increasing
the number of stimuli while holding constant the number of
participants did improve the Type 1 error rates somewhat. How-
ever, this improvement was never enough to counterweigh the
strong positive bias due to participants. Even in the best case with
90 stimuli, Type 1 error rates ranged from .086 (with 10 partici-
pants) to .351 (with 90 participants), with an average of .229.

The by-stimulus analysis performed better than the by-
participant analysis in these simulated experiments, but was still
considerably biased. Type 1 error rates for this analysis ranged
from .049 to .221, with an average error rate at .089. Patterns for
the Type 1 error rates generally mirrored those in the by-
participant analysis. That is, increasing the number of stimuli led
to increasingly inflated Type 1 error rates, while increasing the
number of participants only partially counteracted this positive
bias. Only in the experiments with 10 stimuli did the Type 1 error
rates even begin to approach an acceptable average level at .056.
Of course, a between-stimulus analysis with only 10 stimuli will
generally be severely deficient in statistical power.

Because these simulations were based on rather arbitrary spec-
ifications of the variance components, we redid them four different
times, each time reducing one of the four variance components by
half, but leaving the other three components as previously speci-
fied. When o7, was set at 2 (rather than 4 as in the previous
simulations) and all other components specified as previously, all
Type 1 error rates for the by-participant analysis increased (the
average was .382 instead of .317) while the Type 1 error rates for
the by-stimulus analysis slightly decreased (the average was .070
instead of .089). When 07, was reduced to 2 (rather than 4 as in
the previous simulations) and again all other components were
specified as in the original simulations, all Type 1 error rates for
the by-stimulus analysis increased (the average was .115 instead of
.089) while the Type 1 error rates for the by-participant analysis
decreased (the average was .221 instead of .317). When o was

reduced to 2, there were minimal effects on Type 1 error rates for
either the by-participant or the by-stimulus analyses. Finally, a
reduction of Gf, from 16 to 8, resulted in somewhat greater
inflation of Type 1 error rates for both the by-participant and the
by-stimulus analyses. In sum, what these further simulations show
is that the Type 1 error rates remain inflated for these tests
regardless of variation in the magnitude of these components of
variance.

In some areas of psychology, and especially in psycholinguis-
tics, it has become common practice to report the results of both
the by-participant and by-stimulus analyses of the data, and to
accept a result as significant only when both individual analyses
indicate a significant result (Raaijmakers, Schrijnemakers, & Gre-
men, 1999). The reasoning seems to be that if a significant result
for the by-participant analysis permits one to generalize across
participants, and a significant result for the by-stimulus analysis
permits one to generalize across stimuli, then it must be that having
significant results from both analyses permits one to generalize
across both participants and stimuli.

As others have pointed out, this reasoning, though intuitively
appealing, is in fact flawed (Raaijmakers et al., 1999; Raaijmakers,
2003). Conceptually, a significant by-participant result suggests
that experimental results would be likely to replicate for a new set
of participants, but only using the same sample of stimuli. A
significant by-stimulus result, on the other hand, suggests that
experimental results would be likely to replicate for a new set of
stimuli, but only using the same sample of participants. However,
it is a fallacy to assume that the conjunction of these two results
implies that a result would be likely to replicate with simultane-
ously new samples of both participants and stimuli.

Treating Both Participants and Stimuli as Random:
Quasi-F's and Mixed Models

The classic solution for testing the effects of a fixed treatment
variable in the presence of two crossed random factors (partici-
pants and stimuli) involves the computation of a quasi-F ratio
(Clark, 1973; Winer, 1971). This quasi-F statistic derives from the
variance decomposition of the full design and the computation of
expected mean squares in terms of the variance components that
contribute to the overall variation in the data.

Given the design we have been using, the recommended quasi-F
for an analysis that collapses across neither participants nor stimuli
is given by

F _ MSC + MSPXS(C)
i MSpyc + MSs(c)

In terms of expected mean squares from Table 1, this quasi-F has
an expected value of

2 2 2 2 2 2 2
(o7 + Opxsic) T 40pxc T POsc) + pqoe) + (o, + U'sz(C))

2 2 2 2 3 2
(o7 + Opxsio) T qopxe) + (o) + Opxsc) +P0's(C))

Fopar =

The rationale underlying this quasi-F is that its numerator will
exceed its denominator only to the extent that that the variance due
to condition (o) is greater than zero. The degrees of freedom
associated with this quasi-F are approximate, due to the fact that it
is not truly an F ratio; that is, it is not the ratio of two chi-square-
distributed random variables. Expressions for calculating approx-
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imate df,, and df, can be found in the relevant literature we have
cited.

As we have said before, the variance decomposition and expres-
sions for the expected mean squares of Table 1 rely on assump-
tions of complete data and accordingly independence of the fixed
and random factors in the design. Additionally, in designs more
complicated than the simple one we have so far explored, the
computation of the expected mean squares and the derivation of
the appropriate quasi-F ratio become more complex.

A more general and tractable solution to the analysis of data
with multiple random effects is provided by the literature and
software devoted to what is called mixed effects modeling of data.
Social psychologists are increasingly familiar with a subset of
these models that are variously known as hierarchical linear
models or multilevel models (Hox, 2002; Kenny, Kashy, & Bolger,
1998; Raudenbush & Bryk, 2002; Singer & Willett, 2003; Snijders
& Bosker, 1999). Data structures for such models involve hierar-
chically nested random factors. For instance, a common situation
in which multilevel modeling is used involves students who are
nested in classrooms. There may be one or more fixed effects
included in such designs, and these may vary either at the higher
level of the design (between classrooms) or at the lower level
(between students within classrooms). The estimation of these
models typically involves restricted maximum likelihood estima-
tion whereby different random error variances are estimated at the
different levels of the model.

Less well known is that these models can accommodate data
structures with crossed, rather than nested, random effects. Indeed
some of the best known sources that explicate multilevel models
contain chapters that discuss models with crossed random effects
(Chapter 12 in Raudenbush and Bryk, 2002; Chapter 11 in Snijders
and Bosker, 1999). Most recently, Baayen, Davidson, and Bates
(2008) have shown how such models can be used to analyze
designs such as the one that we have been considering, where
participants and stimuli are both random and crossed with each
other, and one or more treatment variables varies either within or
between participants and/or stimuli.

Let us consider an example data set of the design that we have
been considering with two crossed random effects, participants and
stimuli, and a treatment varying within participants but between
stimuli.” In this example data set, there are 30 participants who
each give responses to 30 stimuli. These stimuli are nested within
one of two treatment conditions, with the first 15 stimuli in one
condition (C = —0.5) and the second fifteen in a second condition
(C=+05)8

We can specify a basic linear regression model for these data
simply as

Y=oy +a,C; + g

where i refers to participant, j refers to stimulus within condition,
Y is the outcome variable, and C is treatment or condition (as
defined previously). This model contains a parameter for the
intercept, o, a parameter for the slope of the condition effect, o,
and the residual error term ¢,;. For these data, this basic regression
equation almost certainly violates one of the major assumptions of
the general linear model—the assumption that the residuals ¢,; are
independent— because it ignores the natural groupings in the data
due to both participants and stimuli. Indeed, the original motiva-
tion to compute within-participant mean scores was precisely to

correct this nonindependence by reducing each subject’s data to
two means and a single difference between these, giving us the
simplified model

Ypi= oy + g

where the outcome variable Y,; is now the difference between the
two within-participant means computed over the stimuli nested
under each level of the treatment and where the diminished num-
ber of residuals €, (one for each participant) are independent of one
another. Although this has long been the standard fix among
psychologists, it fails to deal completely with the nonindependence
in the data.

Mixed effects models avoid the problems associated with ana-
lyzing within-participant or within-stimulus mean scores by in-
stead explicitly modeling the dependencies in the data. They do
this by partitioning the error term in the classical regression model
into several different “errors.” These include the usual residual
error term plus a number of random effect terms. These additional
terms account for the dependencies in the data by adjusting the
predicted values of the model separately for each level of the
grouping factors (e.g., for each participant and/or stimulus). Note
that in the mixed effects framework, it becomes an empirical
question whether random effects are warranted for a given factor.
That is, although our initial designation of a particular factor as
either fixed or random may be guided by conceptual concerns
regarding the intended universe of generalization, it is ultimately
the empirically estimated random variance components from our
mixed model that inform us whether and to what extent experi-
mental effects vary randomly with respect to each grouping factor.
Mixed effects models therefore offer a natural solution to the
issues that we outlined above concerning treating factors as fixed
versus random.’

Let us reformulate this model in terms of a mixed model. In this
model, the intercept has two random components, one varying
from participant to participant and one varying from stimulus to
stimulus within condition. These allow for the fact that some
participants have higher scores on average than others, and some
stimuli elicit higher scores on average than others. The slope for
the Condition variable has only one random error component,
varying across participants (because participants are crossed with
Condition but stimuli are not). Thus, we have a fixed effect of
Condition that is estimated along with four different random error
components: variation in the intercept due to stimuli, variation in
the intercept due to participants, variation in the Condition slope

7 For readers who wish to run analyses on these data, parallel to those we
report, they are available at http://psych.colorado.edu/~cjudd/mixedexam-
ple.csv, with one row for each Stimulus X Participant observation, for a
total of 900 rows of data.

8 We chose these codes (contrast or effect codes) over other coding
methods (e.g., dummy), so that the intercepts in the models that follow
estimate the mean across conditions and the condition slope estimates the
mean difference.

9 If the true variance of the effects of a random factor is zero, then it
ultimately does not matter if the included levels of the factor are exhaustive
or are only sampled from a larger population of levels. In this sense, there
are two necessary conditions in our opinion for defining fixed versus
random factors: whether or not their levels are sampled and whether or not
the effects of the factor (on means, slopes, and so on) vary.
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due to participants, and finally random error variation at the level
of the individual observation. In other words, the model is more
accurately and completely given as

Vi=ay+ o Cy+ o+ o + Gy + g5

Estimation involves estimating the fixed effects in this model (the
grand intercept o, and the condition effect o) and the variances of
the random effects (07, 0}, 07, and o7,). Additionally, there is
potential covariance between the random participant intercept ef-
fect and the participant slope effect (e.g., participants with high
intercepts might tend to have low slopes). Because of the fact that
there are now multiple random error components with different
variances, least-squares estimation has difficulties (Kenny et al.,
1998). Instead, estimation typically proceeds iteratively using a
restricted maximum likelihood loss function.

Let us now turn to the actual analysis of our example data using
mixed effects models. In the Appendix, we provide three different
sets of code for conducting this analysis, using the /me4 package
in R, the PROC MIXED procedure in SAS, and the MIXED
procedure in SPSS. There we also give the output from each of
these analyses, using the specified commands on the illustrative
data set. We summarize these results in Table 3.

In general, fixed effects are typically associated with factors of
substantive interest that motivated data collection. Random effects
are included in models to account for the patterns of nonindepen-
dence present in the data, but they may also be of substantive
interest, as we illustrate later. In general, we would recommend
estimating and testing all fixed effects of theoretical interest and all
random variance components dictated by the particular design
used. Then models may well be trimmed, if fixed effects turn out
to be nonsignificant and if random effects turn out to have zero
variances.

There are three possible random effects (in addition to the
residual error) in the dataset we are using to illustrate these
analyses: (a) intercepts may vary across participants ((r,zw,; that is,
there may be variation in the mean response as a function of
participant; (b) Condition slopes may vary across participants,
(0,2“,); that is, there may be variation in the magnitude of the
condition effect as a function of participant; and (c) intercepts may
vary across stimuli ((rﬁoj). Additionally, because both the intercepts
and slopes vary randomly across participants, it may be that they
also covary.'?

We can test the null hypothesis of zero variance in a random
effect by conducting a likelihood ratio test comparing a more
general model that estimates the variance in the effect against a
nested model that has the same fixed effects structure, but that sets
the particular random effect variance to 0. The likelihood ratio test
statistic is equal to two times the difference of the log-likelihoods
of the two models (sometimes called the model deviances). This
test statistic is asymptotically distributed as a chi-square distribu-
tion with degrees of freedom equal to the difference in the numbers
of parameters between the two models. It is generally recom-
mended that a liberal criterion be used for rejecting the nested
model when performing hypothesis tests for random effects using
likelihood-ratio tests for two reasons. First, as discussed by Pin-
heiro & Bates (2000), the p values for the likelihood-ratio test
using this reference chi-square distribution are often conservative;
that is, the reported p values are often greater than the actual p
value for the test. It is, therefore, misleading to use the conven-

tional alpha level of .05. Second, failing to include a random effect
in a model when in fact the random variance for that effect is not
zero can bias the tests of the fixed effects. In general, our recom-
mendation is that one should explicitly model the random effects
that may be present in the data when it is feasible to do so.

In this case, the model includes seven parameters (two fixed
effect estimates, three random effect variances, one covariance
parameter, and the residual variance) and has log-likelihood
—2590.54. The parameter estimates are listed in Table 3, including
the results of likelihood-ratio tests on each of the random effect
variances, as well as the ¢ statistics and p values for the fixed
effects using the Kenward—Roger approximation for degrees of
freedom.'' The random effect parameters are clearly warranted by
the data, with the exception of the covariance between participant
intercepts and slopes. Additionally, we see a significant fixed
effect of Condition, F; 335, = 9.11, p = .005.

For illustration’s sake, we also present the results of traditional
by-participant and by-stimulus analyses on these illustrative data.
The by-participant analysis, which in this case would be equivalent
to a paired 7 test on the within-subject differences in means, gives
us F, 59 = 30.48, p < .0001. The by-stimulus analysis, which in
this case would be equivalent to a two-sample ¢ test comparing the
stimuli nested under each level of Condition, gives us F; ,g =
11.38, p = .0022. Both of these F ratios are greater than the F we
obtained from the mixed model with crossed random effects for
both participants and stimuli.

Estimating a mixed model that includes random intercepts and
slopes for participants, but no random effects for stimuli, gives us
exactly the same F ratio that we obtained from the by-participant
analysis, which implicitly assumed participants to be the only
random effect. Likewise, estimating a mixed model that includes
random intercepts for stimuli, but no random effects for partici-
pants, gives us the same F' that we obtained from the by-stimulus
analysis. It turns out that for certain experimental designs with
complete, balanced data, these two pairs of (inappropriate) analy-
ses are formally equivalent.

Empirical Type 1 and Power Estimates for the Mixed
Models Analyses

Our goals in this section are twofold. First, we want to demon-
strate through further simulations that the mixed models approach
in which both participants and stimuli are treated as random yields
acceptable Type 1 error rates in exactly the same situations where
our earlier simulations demonstrated substantial inflation in Type
1 error rates when either the by-participant or by-stimulus analyses
were used. Second, we provide some further simulations that begin
to explore the relative statistical power of the mixed model anal-
ysis, given the presence of a true Condition difference, under

1% The presence of a covariance between a random slope and a random
intercept in a design with a categorical condition variable, such as the one
we are using, will be affected in part by the coding convention used to code
that variable. It is partly for this reason that we have chosen to use a
contrast coding convention which builds in no such covariance by design.
This is not true for other coding conventions (e.g., using a dummy code).

"' See the Appendix for a discussion of how degrees of freedom are
estimated in mixed models.
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Table 3
Mixed-Models Results of the Illustrative Data Set
Effect Variance x>  Estimate  SE t df P
Random effects
Participants
Intercept 42940 1459 <.0001
Condition 4.1823 24.3 <.0001
Covariance (Intercept, Condition) 1.1465 1.3 2539
Stimuli
Intercept 3.6706  117.7 <.0001
Residual 15.557
Fixed effects
Intercept —0.180 0.532 —-0.339 5047 736
Condition 2521  0.834 3.018 38.52 .005

Note. —2 X log-likelihood = 5180. See Appendix for the SAS, SPSS, and R input code and output results.

varying numbers of participants and stimuli, again given the clas-
sic design that has been the basis for all we have done so far.

For the simulations that explored Type 1 error rates, as before
we varied the number of participants in the experiment and the
number of experimental stimuli used in total across the two con-
ditions, with both ranging from 10 to 90 in steps of 20, resulting in
a total of 25 unique experimental designs. Each cell of this simu-
lation matrix consisted of 10,000 simulations. And as before, the
variance components were held constant across the simulations at
0. = 16, 07 = Opyc = 05 = 4, and the true Condition
difference was zero. Using the Kenward-Roger approximation
for the degrees of freedom for tests of the fixed effects, we
analyzed the data from each experiment using the specification
laid out in the previous section, treating both participant and
stimulus as random factors and estimating variance components
due to participant intercepts, stimulus intercepts, participant
slopes, and residual variation.

The resulting empirical Type 1 error rates for these simulations
are given in Table 4. On average, across these 250,000 generated
data sets, with the number of participants and the number of
stimuli varying from 10 to 90, the average Type 1 error rate was
.0494. Although there was some variation in these Type 1 error
rates across the 25 cells of the design matrix in Table 4 (from a low
of .044 to a high of .055), this variation does not appear to be
systematic. These results strongly suggest that when there truly is
no effect of Condition, this mixed models approach, treating both
participants and stimuli as random, yields tests of the Condition
difference that have appropriate Type 1 error rates.

Table 4
Empirical Type 1 Error Rates for Mixed Models Analysis
Treating Participants and Stimuli as Random Effects

No. of stimuli

We repeated these simulations, this time including a true Con-
dition difference, to begin to examine issues of statistical power as
a function of varying the numbers of participants and stimuli in
this design where participants are crossed with the two levels of
Condition and stimuli are nested under them. The true value of the
Condition difference was set at 2 units with all other variance
components left as they were in the previous simulations. In power
analyses one typically expects power to be reported in terms of
some standardized true effect size, comparing the magnitude of the
treatment difference to an estimate of error. Because of multiple
variance components which might all be considered error in this
mixed design, there is no way to easily specify a single standard-
ized effect estimate for these power analyses. Accordingly, we
provide the value of true Condition difference in absolute units and
the various variance components as specified in the power analy-
sis.'?

Figure 1 plots the empirical statistical power estimates that
resulted from these simulations as a function of the number of
participants and the number of stimuli. Unsurprisingly, as both the
number of participants and the number of stimuli increase, statis-
tical power increases. What is perhaps a bit surprising is that the
power benefit of increasing the number of participants seems to be
relatively small after 30 while increasing the number of stimuli
pays benefits beyond 30 (i.e., beyond 15 per condition). This
conclusion is undoubtedly specific to this design, where partici-
pants are crossed with condition while stimuli are nested under the
two conditions. These power results also depend on the values of
the variance components we have used, which admittedly were
rather arbitrary. In general, as the random variance components are
larger, designs will tend to have less power.

No. of participants 10 30 50 70 90
10 .046 .048 .049 049 051
30 047 .047 .052 044 .052
50 051 .050 .051 048 052
70 .048 .047 .055 052 .051
90 053 .050 .046 049 .049

12 Although there is no commonly agreed-upon effect size estimate in
linear mixed models, one can begin to specify the general conditions for
estimating an effect size. Basically, one would like to compare the mag-
nitude of a fixed effect estimate with the expected variation in responses in
a single condition. This expectation can be estimated, depending on the
details of the design, from the estimated random variance components,
although the details of doing this are beyond the scope of this article.
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Figure 1. Statistical power levels as a function of the number of partic-

ipants and the number of stimuli in a design where participants are crossed
with Condition and Stimuli are nested under its two levels. (Note: o2 = 16,

0% = Ohye = U%,S(C) = 4, and the true condition difference is 2 units.)

Brief Consideration of Other Designs

The model specification and power estimates that we have just
given are specific to the illustrative research design that we have so
far considered, with participants crossed with condition and stimuli
nested under its levels. There are many alternative designs that we
might have considered. In the paragraphs that follow, we briefly
discuss some alternative designs and model specification in these,
before turning to the analysis of some actual social psychological
data sets.

First, consider a design in which the roles of participants and
stimuli are reversed: each stimulus is found once in each condition,
and participants are nested under condition. For instance, in Ham-
ilton, Katz, and Leirer (1980), participants encounter a set of
stimulus persons and are either given memory or impression
formation instructions. Thus, participants are either in one condi-
tion or the other (i.e., instructions), and each stimulus person is
encountered in both conditions. For this design, the model speci-
fication would include random intercepts for participants and both
random intercepts and random condition slopes for stimuli, exactly
the reverse of the design that we have considered. And the power
conclusions we reached about the relative impact of increasing the
numbers of participants and stimuli would be exactly reversed.

Second, it might be that both participants and stimuli are crossed
with condition. For instance, there is one set of stimuli, and each
participant does two different tasks with all such stimuli (e.g., two
different judgment tasks where task is the independent variable of
interest, i.e., condition). Here the model specification would in-
clude random intercepts and random slopes for both participants
and stimuli.

A variation on this second design might be that each participant
does both tasks, but one set of stimuli is used for one task and a
second set is used for the second task, and which stimulus set
is used in which task is counterbalanced across participants. In this
case, both task and the counterbalancing variable (i.e., which
stimulus set is in which task) might be treated as fixed effects.
Task varies within participants while the counterbalancing factor
varies between them. Both task and the counterbalancing factor
vary within stimuli. The model specification would thus include
random intercepts and task slopes for participants and random
intercepts, task slopes, and counterbalancing slopes for stimuli.

There are a myriad of further designs, increasingly complex, as
the number of fixed effects proliferates and as there are multiple
stimulus sets. Rather than continue this abstractly, we chose to
illustrate further design complexities and model specification with
some actual data sets in social psychology.

Mixed Model Illustrations With Actual Data Sets

Our goal in this section of the article is to examine some
well-known social cognitive data sets that have been reported in
the literature to illustrate the use and advantages of the mixed
models approach treating both participants and stimuli as random
effects."”

“Shooter” Data

The first data set is taken from the “shooter” paradigm that
examined whether the race of a target influences the speed with
which participants are able to correctly discriminate between tar-
gets who are holding a weapon (where the correct response is to
“shoot”) and targets who are unarmed (where the correct response
is “not shoot”; Correll et al., 2002; 2007). In the specific data set
examined, 36 participants responded to 100 randomly ordered
shooter trials in which there were 25 armed White targets, 25
armed African American targets, 25 unarmed White targets, and
25 unarmed African American targets. Each specific target (of
which there were 25 White males and 25 African American males)
appeared twice in this sequence, once armed and once unarmed.
Thus, participants are crossed with both target race and gun (armed
vs. unarmed), whereas targets are crossed with gun but nested
under target race.

Analyses were conducted on log-transformed response latencies
involving only trials where correct responses were given. In total
across all participants, there were 36 X 100 = 3,600 trials. Of
these, correct responses were given on 3,402 trials. Thus, 5.5% of
the data were missing from this analysis. The basic shooter hy-
pothesis is that correct responses to stereotype-congruent targets
(unarmed White and armed African American) would be faster
than correct responses to stereotype-incongruent targets (unarmed
African American and armed White). Thus, the prediction is a race
of target by gun interaction.

Three different analyses were conducted. First, we treated par-
ticipant as random but ignored target, analyzing four mean re-
sponse latencies for each participant (mean latencies to armed and
unarmed White and African American targets). This by-participant
analysis yielded a significant race of target by gun interaction,
F, 35 = 57.89, p < .001. This is the analysis reported in the
published “shooter” articles.

The second analysis was the by-stimulus analysis, treating target
as random and collapsing across participants. Specifically, for each
target (25 Whites and 25 African Americans), two mean response
latencies were computed (one for when the target was armed and
one for when he was unarmed), averaging across all participants
who provided correct responses to each target in each condition. In
this analysis, race of target is between targets, and gun is within

'3 The full syntax and output for these analyses are available from the
authors upon request.
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them. This analysis yielded a marginally significant race of target
by gun interaction, F, 4,5 = 3.74, p = .059.

The final analysis was based on the mixed models approach,
specifying both participants and targets as random, with random
error components for the intercept, gun effect, target race effect,
and gun by target race interaction for participants and random error
components for the intercept and gun effect for targets, as well as
the covariances between these random effects. Effect or contrast
coding was used to code the fixed factors, gun (.5 = gun; —.5 =
no-gun) and race (.5 = black target; —.5 = white target) and the
interaction was computed as the product of these codes. This
analysis revealed a significant main effect of gun such that re-
sponses were faster to armed targets than to unarmed ones (as did
the by-participant and the by-stimulus analyses). Additionally
there was a marginally significant race of target by gun interaction,
in the expected direction with faster responses to stereotype-
congruent targets than to stereotype-incongruent targets, b =
—.06, F| 4, =3.39,p=.072

Testing the variance components in this mixed model revealed
that the variance of the gun by target race effect across participants
was not significantly different from 0, meaning that the shooter
effect is basically the same for all participants. This suggests that
one might look in vain for individual differences that might mod-
erate the effect. There was, however, considerable random varia-
tion between targets in the magnitude of the gun effect, suggesting
considerable variation from target to target in latency differences
as a function of whether the target is armed. It is largely because
of this variation that the by-participant analysis (which ignores this
variation) overestimates the significance of the shooter effect.

Afrocentric Features Data

The second data set is taken from a line of work conducted by
Blair and colleagues, examining how stereotypic judgments ensue
from Afrocentric facial features that vary from target to target even
within racial categories (Blair et al., 2005; Blair, Judd, & Chap-
leau, 2004; Blair, Judd, Sadler, & Jenkins, 2002). The specific data
set examined was reported in Blair et al. (2005). Participants in this
study made judgments about 64 African American male target
individuals. Participants were shown a photograph of a target
individual as well as a record of whether that target had acted
aggressively in four previous situations. The photographs pre-
sented people who varied in the degree to which they possessed
Afrocentric facial features (as determined by pretest participants—
each photograph was scaled on this variable as the mean judgment
provided by pretest participants, o = .87). All target individuals
had consensually been identified as African American. In addition,
the attractiveness of each individual face was also scaled, again as
the mean from pretest participants (e = .93). The other informa-
tion provided for each target was a score that varied from O to 4,
indicating the number of previous situations in which the target
had acted aggressively. These previous situations had been de-
scribed for participants as well as the behaviors that were either
aggressive or not. Each participant’s task was to judge the prob-
ability that each target individual would act aggressively in a fifth
situation that had also been described. Individual target photo-
graphs were randomly paired with scores on the previous situa-
tions individually for each participant. The researchers clearly
expected high probability of aggression judgments in the fifth

situation for target individuals who had acted more aggressively in
the four previous situations. Over and above that, the prediction
was that target individuals with more Afrocentric facial features
would be seen as having a higher probability of aggressive behav-
ior in the fifth situation. Thus, in these data, the critical indepen-
dent variable (Afrocentric facial features) varied continuously
across targets, as did facial attractiveness and levels of previous
aggression that needed to be controlled in the analysis.

The original analysis of these data as reported in Blair et al.
(2005) treated participants as random but not targets. Because the
independent variable and covariates were continuous, they could
not compute means to conduct the by-participant analysis. Instead,
they proceeded as follows: First, for every participant, a within-
participant model was estimated, regressing probability judgments
on three predictor variables: Afrocentric facial features of the
targets, facial attractiveness, and the levels of previous aggression
attributed to the target. These individual-participant multiple re-
gression models were estimated with the 64 targets as the unit of
analysis. From these regression models, one for each participant,
the individual slopes for each predictor became the data for further
analyses to test whether their means differed significantly from
zero on average across participants. One certainly expected a
significant average effect of prior levels of aggression on the
probability estimates. The more interesting prediction was that
over and above this effect and the effect for attractiveness, the
average slope for the within-participant effect of Afrocentric fea-
tures would also differ significantly from zero. The resulting ¢,
with 46 degrees of freedom, equaled 2.53, indicating that targets
having more Afrocentric features were given higher probability of
aggression judgments, controlling for prior aggression levels and
attractiveness.

The mixed models analysis treats both participants and targets
as random effects. Each participant by target observation is the unit
of analysis, with each row of data indicating the probability of
aggression judgment given by that participant to that target, the
target’s level of prior aggression (from O to 4), the target’s attrac-
tiveness, and the target’s Afrocentric facial features. The fixed
effects are the intercept, the effect of level of prior aggression, the
effect of attractiveness, and the effect of Afrocentric features. Only
the intercept in this model varies randomly across targets, whereas
the intercept and the slopes of prior aggression, attractiveness, and
Afrocentric facial features vary randomly across participants (and
these may covary as well). To make the intercept meaningful, all
three predictors were centered around their grand means. Accord-
ingly, the intercept equals the mean probability of aggression
attributed to each target by each participant, and the variance
components associated with the intercept estimate the variability in
these means either across targets or participants.

The mixed model estimated five random variance components
(intercept across targets, intercept across participants, and three
slopes across participants), the covariances between these random
effects, and fixed effects for the intercept and each of the three
predictors. Examining the tests of the fixed effects, we find un-
surprisingly that there is a highly significant effect of prior aggres-
sion, b = 20.49, t,, o = 24.92, p < .0001. Controlling for this (and
also for facial attractiveness), faces with more Afrocentric features
were given higher aggression probability estimates, b = 0.75,
ts;; = 2.08, p = .0430. Facial attractiveness did not have a
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statistically significant effect on these probability estimates, b =
—0.64, 1505 = —0.99, ns.

Turning to the random components of variance, there is signif-
icant variability across target faces in the intercepts, meaning that
the mean probability estimates varied across target faces, even
with their prior aggression, Afrocentric features, and attractiveness
controlled. Across participants, the intercepts also showed highly
significant variance across participants. Additionally, there was
significant variation across participants in the degree to which
probability judgments were influenced by prior levels of aggres-
sion. Interestingly, variation in the slopes for Afrocentric features
was not significant, suggesting no individual differences in the
degree to which higher aggression probability estimates were
given for targets with more Afrocentric facial features.

“Retroactive Priming” Data

Our third data set is from Bem (2011), a controversial article
recently published in this journal that claimed to find evidence for
“psi” or premonition of future events. This study has been the
subject of much criticism suggesting that the findings are surely
nonreplicable, with some critics going so far as to proclaim that the
Bem article demonstrates that experimental psychologists in gen-
eral must abandon their traditional “frequentist” statistics and
begin using Bayesian data analysis techniques (Wagenmakers,
Wetzels, Borsboom, & van der Maas, 2011). It is our opinion that
there is nothing inherently wrong with standard hypothesis testing
if it is based upon correct models (i.e., treating factors as random
when they should be). One problem, we suspect, in Bem’s (2011)
research and elsewhere is that random variation due to stimuli has
not been considered and handled in the analyses. We therefore
obtained the data from one of the experiments reported by Bem
(Experiment 4) to begin to assess whether the findings reported in
the original article would continue to be significant when stimuli,
as well as participants, were treated as random.

In the experiment, Bem used a variation of the standard evalu-
ative priming procedure, in which participants view a series of
target stimuli, each one very briefly preceded by either a positive
or negative prime word, and are asked to classify the target
stimulus as either “good” or “bad” as quickly as possible. The
classic evaluative priming effect is that participants are faster to
correctly classify target stimuli when they are preceded by an
evaluatively congruent prime compared with an incongruent prime
(Fazio, Sanbonmatsu, Powell & Kardes, 1986). In the present
experiment by Bem (2011), participants underwent a series of such
priming trials, half of which involved the classic or “forward
priming” procedure, and half of which reversed the order of primes
and targets such that participants responded to each target stimulus
before encountering the prime, in a “retroactive priming” proce-
dure. The assumption is that a statistically reliable effect of eval-
uative congruency on response times in the retroactive priming
procedure would indicate evidence for psi.

The experiment included 99 participants, each of whom re-
sponded to 64 trials, half using the forward priming procedure and
half using the retroactive priming procedure. A fixed set of 16
positive and 16 negative photographs were used as the target
stimuli in the forward priming condition, and a different fixed set
of 16 positive and 16 negative photographs were used in the
retroactive condition. Each photograph was preassigned two prime

words, one positive and one negative, and each participant viewed
either the positive or the negative prime for the associated target at
random.

Bem (2011) reported analyses of these data using different
transformations of the response latency dependent variable to
correct for positive skew (either a log transformation or an inverse
transformation) and using different criteria for excluding outlying
trials (excluding trials where the response time exceeded either
1,500 ms or 2,500 ms), all with similar results. We focus on only
one of these analyses here, that using the inverse transformation
and excluding responses that exceeded 2,500 ms. This is because
we found that the inverse transformation was generally more
successful in correcting positive skew in the model residuals than
was the log transformation for these data. Our initial analyses of
these data, to replicate Bem’s results, treated participants as ran-
dom but both primes and stimuli as fixed, yielding statistically
significant priming effects for both the forward priming trials, b =
31.4 ms, tyg = 4.71, p < .001, and the retroactive priming trials,
b =239 ms, tyg = 2.57, p = .012.

We reanalyzed these data using mixed models with random
effects for participants, primes, and targets. Tests of the fixed
effects in the models showed that while the priming effect re-
mained statistically intact for the classic or forward priming trials,
b =347 ms, tye9, = 3.82, p = .0292, the priming effect was no
longer significant for the retroactive priming trials, » = 11.3 ms,
1,55 = 1.53, p = .136.

As in earlier data sets, tests of the random variance components
in this analysis are of substantive theoretical interest. Our mixed
models allowed both priming effects to vary randomly with respect
to participants, allowing for individual differences in the magni-
tude of these effects. We might reasonably expect such variation in
the forward priming trials: individuals may differ in the extent to
which they are influenced by evaluative primes. However, if the
phenomenon of retroactive priming does not in fact exist, then it
cannot be that some participants are “better” at it than others. A
likelihood ratio test on the random participant priming slope for
the forward priming trials verifies that there are systematic indi-
vidual differences in the tendency to show the classic evaluative
priming effect, xf = 31.33,p < .001. However, there was not
significant variation in the priming effect for the retroactive prim-
ing trials, x = 1.64,p = .200.

Conclusion

We began this article by saying that the issue of stimulus
sampling in social psychology is an old issue that has reared its
head from time to time, only to be generally ignored in the analysis
of social psychological data. Our goals in this article have been (a)
to highlight, once again, the dangers of implicitly treating stimuli
as fixed when they are in fact random, and (b) to show the way
toward a new and comprehensive approach for analyzing data with
multiple crossed random effects.

In spite of strong warnings in the past that stimuli in social
psychological experiments ought to be treated as random, it is rare
indeed in the social psychological literature to find analyses that
take into account sampling variability of stimuli. As our simula-
tions make clear, in many commonly used designs in social cog-
nitive research, a likely consequence of only treating participants
as a random effect is a large inflation of Type I statistical errors,
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well above the nominal .05 rate. The reanalyses we have reported
for some of Bem’s (2011) experimental data, seemingly demon-
strating extrasensory perception, are particularly compelling in this
regard. As we have said, Bem’s work led to critiques of standard
statistical practices and calls for increased reliance on Bayesian
approaches. We have demonstrated that one problem in Bem’s
research is that random variation due to stimuli was not considered
in the analyses. Once stimuli were treated as random, there re-
mained little evidence for retroactive priming in the experimental
data we examined.

Because the literature is filled with designs where stimuli should
be treated as random but are not, we as a field are probably faced
with many Type 1 errors, leading to persistent failures to replicate
effects when different experimenters use different experimental
stimuli (Lehrer, 2010). And when experimenters attempt to repli-
cate effects using the same experimental stimuli as in previous
work but analyze these data using traditional procedures that
ignore random stimulus variation, it can never be clear whether a
successful replication indicates a truly reliable treatment effect or
merely a consistent bias in the set of experimental stimuli used.
Mixed models can give us greater confidence to rule out this
second possibility by allowing researchers to quantify and account
for random stimulus variation in experimental data.

We have to this point considered only designs involving con-
tinuous response variables (e.g., reaction times), but there are
many common social psychological paradigms that involve cate-
gorical dependent variables, such as the analysis of error rates in
the go/no-go association task (Nosek & Banaji, 2001). Data anal-
ysis in these paradigms often involves computing statistics from
signal detection theory (most commonly the d’ and ¢ statistics)
separately for each participant and then submitting these statistics
to an analysis of variance, in very much the same way that the
by-participant analysis that we discussed previously involves com-
puting and analyzing participant-level mean scores. This widely
used procedure for analyzing categorical response variables con-
sequently suffers from many of the same statistical problems as the
by-participant analyses that we have discussed at length, as do
analyses based more simply on analyzing within-participant pro-
portions (Jaeger, 2008; Rouder et al., 2007). Categorical data of
this kind can be handled under the mixed models approach by
adopting a logit link function, extending the familiar logistic
regression model to include crossed random effects for participants
and stimuli.

Although we have emphasized the costs of not treating both
participants and stimuli as random, we hope to have also conveyed
some of the benefits of using a mixed models approach to data
with both factors random. A pronounced benefit is that one can
obtain estimates of the various variance components, and these
may lead in turn to new insights about factors that might be
responsible for unexplained variance in data, either associated with
stimuli or participants. Additionally, if one has estimates of the
relative magnitude of these variance components, one can begin to
figure out the relative power benefits of adding participants versus
adding stimuli to a design. In general, it should be the case that as
variance components become larger, power benefits will accrue
with the inclusion of additional stimuli or participants across
which those particular effects vary. So, for instance, in our classic
design, if one believed that there was more intercept variance due
to stimuli than variance in condition slopes due to participants, one

would be better off increasing the number of stimuli than the
number of participants. Full details of this, however, await further
work that more adequately evaluates power for a range of research
designs, varying the magnitude of the various relevant variance
components. And this further work needs to develop more pre-
cisely appropriate measures of effect size to permit meta-analytic
integration of results across studies that utilize mixed models
analyses.

Thinking about these models clarifies often-perplexing issues
about the sampling of stimuli in studies such as those we have
discussed. Should one ensure considerable stimulus variability or
should one attempt to have stimuli that resemble each other as
closely as possible? In the shooter data set, the targets were chosen
so they varied considerably, and this was considered a strength of
the design. On the other hand, in the Afrocentric features data, the
targets were all of similar age, dress, and so on. This difference
explains why the by-participant analysis was much more biased in
the case of the shooter data set than in the Afrocentric features data
set. At the same time, however, the wider stimulus sampling in the
shooter data set permits us to further explore stimulus character-
istics that may explain the variability of the armed versus unarmed
difference from target to target in that data set. As in sampling
participants, sampling less variable stimuli may lead to power
benefits, but more narrowly defined samples of stimuli also mean
that one is unable to identify significant further moderators of
effects of theoretical interest and that the conclusions make refer-
ence only to a narrower range of stimuli.

It is exciting to point to new methods that permit one to include
multiple random factors in the analysis of social psychological
data. Unlike older methods that were suggested but rarely imple-
mented, mixed models permit estimation of appropriate models in
the presence of missing data, nonorthogonal factors, and indepen-
dent variables that are not categorical. The mixed models approach
that we have outlined, based in large part on recent work by
Baayen et al. (2008) and others, seems very promising indeed. It is
our hope that researchers in social psychology will now realize the
importance and benefits of treating stimuli as random and will
begin to implement the sort of analyses we have outlined.
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Appendix

Mixed Model Analyses of the Illustrative Dataset in R, SAS, and SPSS

R

Linear mixed effects models can be analyzed in R using the
Imer() function from the I/me4 package (Bates, Maechler, &
Bolker, 2011), which uses optimization methods specifically
suited for fitting models that include crossed random effects. We
first assume that the data set is loaded in R in the “long” format
(i.e., 900 rows of data, one for each of 30 participant ratings of
each of 30 stimuli). Each row of data indicates the response or
outcome variable (y), the stimulus (j), the participant (i), and the
condition. We assume the data set is stored in a data frame object
named dat. We can then fit the initial model by using the
following commands:

> library(lmed)
> model_1 <- Imer(y ~ ¢ + (1| 3) + (c ]| i),
data=dat)

Note that the > symbol at the start of each line simply indicates the
input prompt and is not an actual command entered by the user.
The first input line says to load the Ime4 package. This is necessary
to access the functions of Ime4 and assumes that Ime4 has already
been installed. If Ime4 has not been installed, this can be done very
simply from the input prompt by calling the install.pack-
ages () function. The second input line says to create a new
object, called model_1 and to assign to that object the output of
our call to the Imer () function. Within the call to Imer (), we
specify the response variable on the left side of the ~ operator,
followed by the fixed effects, followed by the random effects. For
each random effect, we must specify the grouping factor to which
the effect is random. We do this for each random effect by
encapsulating the effect in parentheses and then indicating the
effect on the left side of the | symbol and the grouping factor on the
right side. Thus, our first random effect, (1 | 7), indicates that the
intercept (denoted with a “1”’) is random with respect to stimuli (j).
When a slope is given as random, lmer () assumes, unless
explicitly told otherwise, that the user also wishes to add random
intercepts for the grouping factor in question, as well as to estimate
the covariance between the random effects. This is a reasonable
assumption because it rarely makes sense to allow random slopes
but not random intercepts for a given grouping factor. So our
second random effect, (c | 1), indicates that both the intercept and
the Condition slope are random with respect to participant (i) and
that a covariance between the two effects should be estimated.
Finally, we indicate that our data set is contained in a data frame
object named dat.

To view the results, we can simply enter the name of the fitted
model object as a command. The resulting output is contained in
Figure Al.

It is noteworthy that the fixed effects summaries obtained from
models fit by Imer() include parameter estimates, standard errors,

Linear mixed model fit by REML
Formula: y ~c + (1 | ) + (c | i)
Data: dat
AIC BIC loglLik deviance REMLdev
5193 5227 -2590 5181 5179
Random effects:

Groups  Name Variance Std.Dev. Corr

j (Intercept) 3.6703 1.9158
i (Intercept) 4.2940 2.0722

€ 4.1822 2.0450 0.271
Residual 15.5573 3.9443

Number of obs: 900, groups: j, 30; i, 30

Fixed effects:
Estimate Std. Error t value

(Intercept) -0.1804 0.5318 -0.339
c 2.5211 0.8354 3.018
Correlation of Fixed Effects:
(Intr)
c 0.086
Figure Al. Output for mixed models estimation in R.

and ¢ statistics, but no degrees of freedom or p-values. As Baayen,
Davidson, and Bates (2008) discussed at some length, this is a
deliberate choice reflecting the fact that it is not obvious how these
quantities should be computed in the context of mixed effects
models. One method for obtaining p values in the face of these
conceptual difficulties, which seems to work well in many situa-
tions, is to rely on the Kenward—Roger approximation (Kenward &
Roger, 1997; see also Alnosaier, 2007; Schaalje, McBride, &
Fellingham, 2002, Spilke, Piepho, & Hu, 2005; ). This procedure
is a modification of the Satterthwaite approximation; it differs in
that in some cases it will rescale the F ratio in addition to com-
puting the quantity for degrees of freedom that results in a better
approximation to an appropriate F distribution. The F tests with
the Kenward—Roger approximation can be conducted in R using
the KRmodcomp () function from the pbkrtest package (Halekoh
& Hgjsgaard, 2011), which compares two nested models. In the
following syntax, we first specify a model, model_2, which has
the same random effects structure as model_1 but which ex-
cludes Condition from the fixed effects specification (again, a “1”
indicates the intercept, which is implicit in the fixed effects spec-
ification for model_1). We then compare the two models using
KRmodcomp () to obtain the estimated effect of Condition under
the Kenward—Roger approximation (see Figure A2).

SAS

In SAS, one uses PROC MIXED to estimate mixed models. The
following syntax estimates the full model for these data, allowing
random variance components for the intercept with respect to j, the
intercept and ¢ slope with respect to 7, and the covariance between
these latter two:

(Appendix continues)
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> library(pbkrtest)
> model2 <- lmer(y ~1 + (1 | j) + (c | i), data=dat)
> KRmodcomp(modell,model2)
F-test with Kenward-Roger approximation; computing time: 11.35 sec.
Large : y ~c+ @ | )+ (c | 1)
small : y~1+ Q| j)+ (c | i)
Fstat dfl df2  p.value F.scaling
9.106821 1 38.51768 0.0044978 1

Figure A2. Input and output for Kenward-Roger test in R.

proc mixed covtest:

class i j;

model y=c/solution ddfm=kr;
random intercept c/sub=i type=un;
random intercept/sub=7j;

run;

The covtest option asks SAS to provide tests of the various random
effects (albeit not the likelihood ratio chi-square tests that we have
recommended). In the model statement, the solution option spec-
ifies that the fixed effects parameter estimates be printed (other-
wise only their associated Fs are output) and the ddfin=kr option
specifies that the Kenward—Roger approximation be used for the
degrees of freedom in testing the fixed effects. The two random
statements specify the random effects in the model, first the
intercept and the ¢ slope with respect to participant (i) and then the
intercept only with respect to stimuli (j). The fype=un option
directs SAS to estimate the covariance between the two random
components with respect to i.

The resulting output (which we have edited to keep things short)
is given in Figure A3.

The variances of the random components are given as UN(1,1)
i for the intercept with respect to i, UN(2,2) i for the slope with
respect to i, and Intercept j for the intercept with respect to j.
UN(2,1) i is the covariance between the i intercepts and slopes.
Each of these variance components is tested by computing an
estimated standard error and an approximate Z statistic. When
sample sizes are sufficiently large, these tests will give results that
are quite close to the likelihood-ratio chi-square difference tests
that we and others prefer (Fears, Benichou, & Gail, 1996). At the
bottom of the output, the fixed effects parameter estimates and
associated ¢ statistics are given, along with the Kenward-Roger
degrees of freedom approximation.

SPSS

Mixed effects models are estimated in SPSS using the MIXED
procedure. We can use the following set of commands to estimate

the full model that allows covariance between the random effects
for i.

MIXED y WITH c

/FIXED=c

/PRINT=SOLUTION TESTCOV

/RANDOM=INTERCEPT c | SUBJECT(i) COVTYPE (UN)
/RANDOM=INTERCEPT | SUBJECT(j) .

The first line indicates the dependent and independent variables.
Note that we use WITH rather than BY because c is precoded at
—0.5 versus +0.5. We therefore tell SPSS to treat this variable as
continuous so that it does not attempt to recode c. In the next lines,
we specify c as a fixed effect and then request that the parameter
estimates for the fixed effects and tests of the random covariance
parameters be printed with the output. In the final two lines, we
specify the intercept and the Condition effect both as being random
with respect to i and the intercept additionally as being random
with respect to j. For both of these grouping factors, we specify an
unstructured covariance matrix so that all possible random effect
covariances are estimated.

The Mixed Procedure

Iteration History

Iteration Evaluations -2 Res Log Like Criterion
] 1 5420.61838245
1 1 5179.04463914 0.00000000
Convergence criteria met.
Covariance Parameter Estimates
Standard z
Cov Parm Subject Estimate Error Value Pr z
UNC1,1) i 4.2938 1.2641 3.40 0.0003
UNC2,1) i 1.1464 1.0409 1.10 0.2707
UN(2,2) i 4.1821 1.6462 2.54 0.0055
Intercept 3j 3.6703 1.1198 3.28 0.0005
Residual 15.5573 0.7721 20.15 <.0001
Fit Statistics
-2 Res Log Likelihood 5179.0
AIC (smaller is better) 5189.0
AICC (smaller is better) 5189.1
BIC (smaller is better) 5179.0
Solution for Fixed Effects
Standard

Effect Estimate Error DF t Value Pr > Itl
Intercept -0.1804 0.5317 50.5 -0.34 0.7358
c 2.5211 0.8354 38.5 3.02 0.0045

Figure A3. Output for mixed models estimation in SAS.

(Appendix continues)
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Information Criteria

-2 Restricted Log Likelihood
Akaike's Information Criterion (AIC)
Hurvich and Tsai's Criterion (AICC)
Bozdogan's Criterion (CAIC)

Schwarz's Bayesian Criterion (BIC)

5179.045
5189.045
5189.112
5218.045

5213.045

Estimates of Fixed Effects

95% Confidence Interval

Parameter | Estimate | Std. Error df Sig. | Lower Bound | Upper Bound
Intercept -.180422 531749 | 50.475| -.339|.736 -1.248222 .887378
[+ 2.521067 .835418 | 38.516| 3.018].004 .830596 4.211538
Estimates of Covariance Parameters
Std. 95% Confidence Interval

Parameter Estimate | Error | Wald Z | Sig. | Lower Bound | Upper Bound
Residual 15.557 .772| 20.149| .000 14.115304 17.146643
Intercept + ¢ [subject =i] ~ UN (1,1) 4.294| 1.264| 3.397|.001 2.411326 7.645878

UN (2,1) 1.146 | 1.041 1.101| .271 -.893741 3.186625

UN (2,2) 4.182| 1.646| 2.540|.011 1.933423 9.046049
Intercept [subject = j] Variance 3.670( 1.120 3.278 1 .001 2.018369 6.674347

These commands give rise to the SPSS output given in Figure

Ad.

Figure A4. Output for mixed models estimation in SPSS.

These results closely match those obtained with R and SAS.
Note that the degrees of freedom reported in the fixed effects
summary by SPSS are under the Satterthwaite approximation. The
Kenward—Roger is generally slightly favored over the Satterth-

waite; however, in many circumstances, as in the present example,
the two methods yield identical or nearly identical results.
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