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POINTS OF SIGNIFICANCE

Nested designs
For studies with hierarchical noise sources, use a 
nested analysis of variance approach. 

Many studies are affected by random-noise sources that naturally 
fall into a hierarchy, such as the biological variation among animals, 
tissues and cells, or technical variation such as measurement error. 
With a nested approach, the variation introduced at each hierarchy 
layer is assessed relative to the layer below it. We can use the relative 
noise contribution of each layer to optimally allocate experimental 
resources using nested analysis of variance (ANOVA), which gener-
ally addresses replication and blocking, previously discussed ad hoc1,2.

Recall that factors are independent variables whose values we 
control and wish to study3 and which have systematic effects on the 
response. Noise limits our ability to detect effects, but known noise 
sources (e.g., cell culture) can be mitigated if used as blocking factors2. 
We can model the contribution of each blocking factor to the over-
all variability, isolate it and increase power2. Statisticians distinguish 
between fixed factors, typically treatments, and random factors, such 
as blocks.

The impact of fixed and random factors in the presence of experi-
mental error is shown in Figure 1. For a fixed factor (Fig. 1a), each of 
its levels (for example, a specific drug) has the same effect in all experi-
ments and an unmodeled uncertainty due to experimental error. The 
levels of a fixed factor can be exactly duplicated (level A1 in Fig. 1a is 
identical for each experiment) and are of specific interest, usually the 
effect on the population mean.

In contrast, when we repeat an experiment, the levels of a random 
factor are sampled from a population of all possible levels of the factor 
(replicates) and are different across all the experiments, emphasized 
by unique level labels (B1–B9; Fig. 1b). Because the levels cannot be 
exactly duplicated, their effect is random and they are not of specific 
interest. Instead, we use the sample of levels to model the uncertainty 
added by the random factor (for example, all mice).

Fixed and random factors may be crossed or nested (Fig. 2). 
When crossed, all combinations of factors are used to study the 
main effects and interactions of two or more factors (Fig. 2a).  
In contrast, nested designs apply a hierarchy—some level combi-
nations are not studied because the levels cannot be duplicated or 
reused (Fig. 2b). Random factors (for example, mouse and cell) 
are nested within the fixed factor (drug) to measure noise due to 
individual mice and cells and to generalize the effects of the fixed 

factor on all mice and cells. If mice can be reused, we can cross 
them with the drug and use them as a random blocking factor2  
(Fig. 2c).

We will use the design in Figure 2b to illustrate the analysis of 
nested fixed and random factors using nested ANOVA, similar to the 
ANOVA discussed previously2. Now nesting is taken into account and 
the calculations have different interpretations because some of the 
factors are random. The fixed factor may have an effect on the mean, 
and the two random factors will add uncertainty. We will be able to 
estimate the amount of variance for each random factor and use it 
to better plan our replication strategy. We can maximize power (for 
example, within cost constraints) to detect a difference in means due 
to the top-level fixed factor or to detect variability due to random fac-
tors. The latter is biologically interesting when increased variance in 
cell response may be due to increased heterogeneity in the genotypes 
and implicated in drug resistance.

We will simulate the nested design in Figure 2b using three factors: 
A (a = 2 levels: control and treatment), B (mice, b = 5 levels, sB

2 = 1),  
C (cells, c = 5 levels, sC

2 = 2). Expression for each cell will be measured 
using three technical replicates (sε

2 = 0.5, n = 3). The raw sample data 
of the simulation are shown in Figure 3a. 

Nested ANOVA calculations begin with the sum of squared devia-
tions (SS) to partition the variance among the factors, exactly as in 
regular ANOVA. For example, the first blue arrow in Figure 3a repre-
sents the difference between the averages of all points from mouse B4 
(X14..) and all points from the control (X1...). Factor C has the largest 
deviations (Fig. 3b) because it was modeled to be the largest source of 
noise (sC

2 = 2). The distinction between regular and nested ANOVA 
is how the mean squares (MS) enter into the calculation of the F-ratio 
for each factor. The F-ratio is a ratio of MS values, and the denomi-
nator corresponds to the MS of the next nested factor (for example, 
MSB/MSC) and not MSE (see Supplementary Table 1 for nested 
ANOVA formulas and calculated values; see Supplementary Table 
2 for expected values of MS). The F-test uses the ratio of between-
group sample variance (estimate of population variance from sample 
means) and within-group variance (estimate of population variance 
from sample variances) to test whether group means differ (for fixed 
factors). In the case of random factors, the interpretation is whether 
the factor contributes noise in addition to the noise due to the factor 
nested within it (for example, is there more mouse-to-mouse variabil-
ity than would be expected from cell-to-cell variability?).

At the bottom of the nested hierarchy (n = 3 technical replicates 
per cell), we find MSE = 0.55, which is an estimate of sε

2 = 0.5 in our 
simulation. We find statistically significant (at a = 0.05) contributions 
to noise from both mice (factor B) and cells (factor C) with estimated 
variance contributions of 0.84 and 2.1, respectively, which matches 

Figure 1 | Inferences about fixed factors are different than those about 
random factors, as shown by box-plots of n = 10 samples across three 
independent experiments. Circles indicate sample medians. Box-plot height 
reflects simulated measurement error (sε

2 = 0.5). (a) Fixed factor levels 
are identical across experiments and have a systematic effect on the mean. 
(b) Random factor levels are samples from a population, have a random 
effect on the mean and contribute noise to the system (sB

2 = 1).
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Figure 2 | Factors may be crossed or nested. (a) A crossed design examines 
every combination of levels for each fixed factor. (b) Nested design can 
progressively subreplicate a fixed factor with nested levels of a random 
factor that are unique to the level within which they are nested. (c) If a 
random factor can be reused for different levels of the treatment, it can be 
crossed with the treatment and modeled as a block. (d) A split plot design 
in which the fixed effects (tissue, drug) are crossed (each combination of 
tissue and drug are tested) but themselves nested within replicates.
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our inputs sB
2 = 1 and sC

2 = 2. Because the top-layer factor is fixed 
and not considered a source of noise, its variance component is not a 
useful quantity—of interest is its effect on the mean. Unfortunately, we 
were unable to detect a difference in means for A (P = 0.25) because of 
poor power due to our allocation of replicates. It is useful to relate the 
F-test for factor A to a two-sample t-test to understand the statistical 
quantities involved and calculate power.

The F-test for the top-layer factor A (F = MSA/MSB) tests the differ-
ence between the variances of treatment and mouse means. Any treat-
ment effect on the mean will show up as additional variance, which we 
stand a chance to detect. Because we have only two levels of factor A, 
the F-test, which has degrees of freedom (d.f.) of a – 1 = 1 and a(b – 1) 
= 8, is equivalent to the two-sample t-test for samples of size b, 2(b – 1) 
d.f. and with t = √F. This t-test is applied to the control and treatment 
samples formed using b = 5 averages Xij.. (Fig. 3a) whose expected 
variance is E[Var(Xij..)] = sB

2 + sC
2/c + sε

2/(cn) = 1.43 (ref. 1). This 
quantity is estimated by MSB/(cn) = 1.28, which is exactly the average 
variance of the two sample variances 1.73 and 0.83 (Supplementary 
Table 3). These samples yield the control and treatment means of 10.1 
and 11.0 (Xi...; Fig. 3a) and a t-statistic of 0.9/√(2MSB/(bcn)) = 1.24, 
which yields the same P value of 0.25 as from the F-test.

We can now calculate the t-test power for our scenario. For a differ-
ence in means of d = 1, the power using samples of size b = 5 is 0.21, 
using the expected variance 1.43. In practice, we might run a trial 
experiment to determine this value using MSB/(cn). Clearly, our initial 
choice of b, c and n was an inadequate design—we should aim for a 
power of at least 0.8. If variance is kept at 1.43 (c = 5, n = 5), this power 
can be achieved for a sample size b = 24. With 24 mice, the expected 
variance of the average across mice would be E[Var(Xi...)] = 1.43/24. 
Dividing this into the total variance due to replication (sB

2 + sC
2 + sε

2 
= 3.5), we can calculate the effective sample size, 57 (ref. 1). As we’ve 
previously seen, this can be achieved with the fewest number of mea-
surements if we have b = 57 mice and c = n = 1. If we assume the cost 
of mice, cells and technical replicates to be 100, 10 and 1, respectively, 
these designs would cost 3,960 (b = 24, c = 5, n = 3) and 6,327 (b = 57, 

c = 1, n = 1). Let’s see if we can use fewer mice and increase replication 
to obtain the same power at a lower cost.

The nested analysis provides a general framework for these cost 
and power calculations. The optimum number of replicates at each 
level can be calculated on the basis of the cost of replication and the 
variance at the level of the factor. We want to minimize Var(Xi...) = 
sB

2/b + sC
2/(bc)+ sε

2/(bcn) within the cost constraint K = bCB + bcCD 
+ bcnCD (CX is cost per replicate at factor X) with the goal of finding 
values of b, c and n that provide the largest decrease in the variance 
per unit cost. The optimum number of technical replicates is n2 = CC/
CD × sε

2/sC
2. In other words, subreplicates are preferred to replicates 

when they are cheaper and their factor is a source of greater noise. 
With the costs as given above (CC/CN = 10) we find n2 = 10 × 0.5/2 
= 2.5 and n = 2. We can apply the same equation for the number of 
cells, c2 = CB/CC × sC

2/sB
2, where CB is the cost of a mouse. Using 

the same tenfold cost ratio, c2 = 10 × 2/1 = 20 and c = 5. For c = 5 and 
n = 2, Var(Xij..) is 1.45, and we would reach a power of 0.8 if we had 
b = 24 mice. This experiment is slightly cheaper than the one with 
n = 3 (3,840 vs. 3,960).

Two components affect power in detecting differences in means. 
Subreplication at the cell and technical layer helps increase power by 
decreasing the variance of mouse averages, Var(Xij..), used for t-test 
samples. The number of mice also increases power because it decreas-
es the standard error of Xij.. (the precision of mouse averages) because 
sample size is increased. To obtain the largest power to detect a treat-
ment effect with the fewest number of measurements, it is always best 
to pick as many mice as possible: effective sample size is largest and 
variance of sample averages is lowest. 

The number of replicates also affects our ability to detect the noise 
contribution from each random factor. If detecting and estimating 
variability in mice and cells is of interest, we should aim to increase 
the power of the associated F-tests (Supplementary Table 1). For 
example, under the alternative hypothesis of a nonzero contribution 
of cells to noise (sC

2), the F-statistic will be distributed as a multiple of 
the null hypothesis F-statistic, Fu,v × (nsC

2 + sε
2)/sε

2. The multiplica-
tion factor is the ratio of expected MS values (Supplementary Table 
2). For our simulation values, the multiple is 13 and the d.f. are u = 40 
and v = 100. The critical F-value is 1.52, and our power is the P value 
for 1.52/13, which is essentially 1 (this is why the P value for factor C 
in Fig. 2b is very low). For level B we have u = 8, v = 40, a multiple of 
3.3 (21.5/6.5) and a power of 0.72. The power of our design to detect 
noise within mice and cells was much higher than that for detecting 
an effect of the treatment on the means.

Nested designs are useful for understanding sources of variability in 
the hierarchy of the subsamples and can reduce the cost of the experi-
ment when costs vary across the hierarchy. Statistical conclusions can 
be made only about the layers actually replicated—technical replica-
tion cannot replace biological replication for biological inference.
Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper (doi:10.1038/nmeth.3137).
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Figure 3 | Data and analysis for a simulated three-factor nested experiment. 
(a) Simulated expression levels, Xijkl, measured for a = 2 levels of factor A 
(control and treatment, i), b = 5 of factor B (mice, j), c = 5 of factor C (cells, 
k) and n = 3 technical replicates (l). Averages across factor levels are shown 
as horizontal lines and denoted by dots in subscript for the factor’s index. 
Blue arrows illustrate deviations used for calculation of sum of squares (SS). 
Data are simulated with mc = 10 for control and mt = 11 for treatment and 
sB

2 = 1, sC
2 = 2, sε

2 = 0.5 for noise at mouse, cell and technical replicate 
levels, respectively. Values below the figure show factor levels and averages 
at levels of A (Xi...) and B (Xij..). Labels for the levels of B and C are reused 
but represent distinct individual mice and cells. (b) Histogram of deviations 
(d) for each factor. Three deviations illustrated in a are identified by the 
same blue arrows. Nested ANOVA calculations show number of times (k) each 
deviation (d) contributes to SS, degrees of freedom (d.f.), mean squares 
(MS), F-ratio, P value and the estimated variance contribution of each factor.
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