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1 Introduction

For over 200 years, philosophers and mathematicians have been using probability
theory to describe human cognition. While the theory of probabilities was first developed
as a means of analyzing games of chance, it quickly took on a larger and deeper signifi-
cance as a formal account of how rational agents should reason in situations of uncertainty
(Gigerenzer et al., 1989; Hacking, 1975). Our goal in this chapter is to illustrate the kinds
of computational models of cognition that we can build if we assume that human learning
and inference approximately follow the principles of Bayesian probabilistic inference, and
to explain some of the mathematical ideas and techniques underlying those models.

Bayesian models are becoming increasingly prominent across a broad spectrum of
the cognitive sciences. Just in the last few years, Bayesian models have addressed animal
learning (Courville, Daw, & Touretzky, 2006), human inductive learning and generalization
(Tenenbaum, Griffiths, & Kemp, 2006), visual scene perception (Yuille & Kersten, 2006),
motor control (Kording & Wolpert, 2006), semantic memory (Steyvers, Griffiths, & Dennis,
2006), language processing and acquisition (Chater & Manning, 2006; Xu & Tenenbaum,
in press), symbolic reasoning (Oaksford & Chater, 2001), causal learning and inference
(Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003; Griffiths & Tenenbaum, 2005, 2007a),
and social cognition (Baker, Tenenbaum, & Saxe, 2007), among other topics. Behind these
different research programs is a shared sense of which are the most compelling computational
questions that we can ask about the human mind. To us, the big question is this: how does
the human mind go beyond the data of experience? In other words, how does the mind
build rich, abstract, veridical models of the world given only the sparse and noisy data that
we observe through our senses? This is by no means the only computationally interesting
aspect of cognition that we can study, but it is surely one of the most central, and also one
of the most challenging. It is a version of the classic problem of induction, which is as old as
recorded Western thought and is the source of many deep problems and debates in modern
philosophy of knowledge and philosophy of science. It is also at the heart of the difficulty
in building machines with anything resembling human-like intelligence.

The Bayesian framework for probabilistic inference provides a general approach to
understanding how problems of induction can be solved in principle, and perhaps how they
might be solved in the human mind. Let us give a few examples. Vision researchers are
interested in how the mind infers the intrinsic properties of a object (e.g., its color or
shape) as well as its role in a visual scene (e.g., its spatial relation to other objects or its
trajectory of motion). These features are severely underdetermined by the available image
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data. For instance, the spectrum of light wavelengths reflected from an object’s surface into
the observer’s eye is a product of two unknown spectra: the surface’s color spectrum and
the spectrum of the light illuminating the scene. Solving the problem of “color constancy”
– inferring the object’s color given only the light reflected from it, under any conditions of
illumination – is akin to solving the equation y = a×b for a given y, without knowing b. No
deductive or certain inference is possible. At best we can make a reasonable guess, based
on some expectations about which values of a and b are more likely a priori. This inference
can be formalized in a Bayesian framework (Brainard & Freeman, 1997), and it can be
solved reasonably well given prior probability distributions for natural surface reflectances
and illumination spectra.

The problems of core interest in other areas of cognitive science may seem very differ-
ent from the problem of color constancy in vision, and they are different in important ways,
but they are also deeply similar. For instance, language researchers want to understand
how people recognize words so quickly and so accurately from noisy speech, how we parse
a sequence of words into a hierarchical representation of the utterance’s syntactic phrase
structure, or how a child infers the rules of grammar – an infinite generative system – from
observing only a finite and rather limited set of grammatical sentences, mixed with more
than a few incomplete or ungrammatical utterances. In each of these cases, the available
data severely underconstrain the inferences that people make, and the best the mind can
do is to make a good guess, guided – from a Bayesian standpoint – by prior probabili-
ties about which world structures are most likely a priori. Knowledge of a language – its
lexicon, its syntax and its pragmatic tendencies of use – provides probabilistic constraints
and preferences on which words are most likely to be heard in a given context, or which
syntactic parse trees a listener should consider in processing a sequence of spoken words.
More abstract knowledge, in a sense what linguists have referred to as “universal grammar”
(Chomsky, 1988), can generate priors on possible rules of grammar that guide a child in
solving the problem of induction in language acquisition. Chater & Manning (2006) survey
Bayesian models of language from this perspective.

Our focus in this chapter will be on problems in higher-level cognition: inferring
causal structure from patterns of statistical correlation, learning about categories and hid-
den properties of objects, and learning the meanings of words. This focus is partly a
pragmatic choice, as these topics are the subject of our own research and hence we know
them best. But there are also deeper reasons for this choice. Learning about causal rela-
tions, category structures, or the properties or names of objects are problems that are very
close to the classic problems of induction that have been much discussed and puzzled over
in the Western philosophical tradition. Showing how Bayesian methods can apply to these
problems thus illustrates clearly their importance in understanding phenomena of induc-
tion more generally. These are also cases where the important mathematical principles and
techniques of Bayesian statistics can be applied in a relatively straightforward way. They
thus provide an ideal training ground for readers new to Bayesian modeling.

Beyond their value as a general framework for solving problems of induction, Bayesian
approaches can make several contributions to the enterprise of modeling human cognition.
First, they provide a link between human cognition and the normative prescriptions of a
theory of rational inductive inference. This connection eliminates many of the degrees of
freedom from a cognitive model: Bayesian principles dictate how rational agents should



BAYESIAN MODELS 3

update their beliefs in light of new data, based on a set of assumptions about the nature of
the problem at hand and the prior knowledge possessed by the agents. Bayesian models are
typically formulated at Marr’s (1982) level of “computational theory”, rather than the algo-
rithmic or process level that characterizes more traditional cognitive modeling paradigms,
as described in other chapters of this volume: connectionist networks (see the chapter by
McClelland), exemplar-based models (see the chapter by Logan), production systems and
other cognitive architectures (see the chapter by Taatgen and Anderson), or dynamical
systems (see the chapter by Shoener). Algorithmic or process accounts may be more satis-
fying in mechanistic terms, but they may also require assumptions about human processing
mechanisms that are no longer needed when we assume that cognition is an approximately
optimal response to the uncertainty and structure present in natural tasks and environ-
ments (Anderson, 1990). Finding effective computational models of human cognition then
becomes a process of considering how best to characterize the computational problems that
people face and the logic by which those computations can be carried out (Marr, 1982).

This focus implies certain limits on the phenomena that are valuable to study within
a Bayesian paradigm. Some phenomena will surely be more satisfying to address at an
algorithmic or neurocomputational level. For example, that a certain behavior takes people
an average of 450 milliseconds to produce, measured from the onset of a visual stimulus, or
that this reaction time increases when the stimulus is moved to a different part of the visual
field or decreases when the same information content is presented auditorily, are not facts
that a rational computational theory is likely to predict. Moreover, not all computational-
level models of cognition may have a place for Bayesian analysis. Only problems of inductive
inference, or problems that contain an inductive component, are naturally expressed in
Bayesian terms. Deductive reasoning, planning, or problem solving, for instance, are not
traditionally thought of in this way. However, Bayesian principles are increasingly coming
to be seen as relevant to many cognitive capacities, even those not traditionally seen in
statistical terms (Anderson, 1990; Oaksford & Chater, 2001), due to the need for people to
make inherently underconstrained inferences from impoverished data in an uncertain world.

A second key contribution of probabilistic models of cognition is the opportunity for
greater communication with other fields studying computational principles of learning and
inference. These connections make it a uniquely exciting time to be exploring probabilistic
models of the mind. The fields of statistics, machine learning, and artificial intelligence
have recently developed powerful tools for defining and working with complex probabilistic
models that go far beyond the simple scenarios studied in classical probability theory; we
will present a taste of both the simplest models and more complex frameworks here. The
more complex methods can support multiple hierarchically organized layers of inference,
structured representations of abstract knowledge, and approximate methods of evaluation
that can be applied efficiently to data sets with many thousands of entities. For the first
time, we now have practical methods for developing computational models of human cog-
nition that are based on sound probabilistic principles and that can also capture something
of the richness and complexity of everyday thinking, reasoning and learning.

We can also exploit fertile analogies between specific learning and inference problems
in the study of human cognition and in these other disciplines, to develop new cognitive
models or new tools for working with existing models. We will discuss some of these
relationships in this chapter, but there are many other cases. For example, prototype



BAYESIAN MODELS 4

and exemplar models of categorization (Reed, 1972; Medin & Schaffer, 1978; Nosofsky,
1986) can both be seen as rational solutions to a standard classification task in statistical
pattern recognition: an object is generated from one of several probability distributions (or
“categories”) over the space of possible objects, and the goal is to infer which distribution
is most likely to have generated that object (Duda, Hart, & Stork, 2000). In rational
probabilistic terms, these methods differ only in how these category-specific probability
distributions are represented and estimated (Ashby & Alfonso-Reese, 1995; Nosofsky, 1998).

Finally, probabilistic models can be used to advance and perhaps resolve some of
the great theoretical debates that divide traditional approaches to cognitive science. The
history of computational models of cognition exhibits an enduring tension between models
that emphasize symbolic representations and deductive inference, such as first order logic
or phrase structure grammars, and models that emphasize continuous representations and
statistical learning, such as connectionist networks or other associative systems. Probabilis-
tic models can be defined with either symbolic or continuous representations, or hybrids of
both, and help to illustrate how statistical learning can be combined with symbolic struc-
ture. More generally, we think that the most promising routes to understanding human
intelligence in computational terms will involve deep interactions between these two tradi-
tionally opposing approaches, with sophisticated statistical inference machinery operating
over structured symbolic knowledge representations. Contemporary probabilistic methods
give us the first general-purpose set of tools for building such structured statistical models,
and we will see several simple examples of these models in this chapter.

The tension between symbols and statistics is perhaps only exceeded by the tension
between accounts that focus on the importance of innate, domain-specific knowledge in
explaining human cognition, and accounts that focus on domain-general learning mecha-
nisms. Again, probabilistic models provide a middle ground where both approaches can
productively meet, and they suggest various routes to resolving the tensions between these
approaches by combining the important insights of both. Probabilistic models highlight
the role of prior knowledge in accounting for how people learn as much as they do from
limited observed data, and provide a framework for explaining precisely how prior knowl-
edge interacts with data in guiding generalization and action. They also provide a tool for
exploring the kinds of knowledge that people bring to learning and reasoning tasks, allowing
us to work forwards from rational analyses of tasks and environments to predictions about
behavior, and to work backwards from subjects’ observed behavior to viable assumptions
about the knowledge they could bring to the task. Crucially, these models do not require
that the prior knowledge be innate. Bayesian inference in hierarchical probabilistic models
can explain how abstract prior knowledge may itself be learned from data, and then put to
use to guide learning in subsequent tasks and new environments.

This chapter will discuss both the basic principles that underlie Bayesian models of
cognition and several advanced techniques for probabilistic modeling and inference that have
come out of recent work in computer science and statistics. Our first step is to summarize the
logic of Bayesian inference which is at the heart of many probabilistic models. We then turn
to a discussion of three recent innovations that make it easier to define and use probabilistic
models of complex domains: graphical models, hierarchical Bayesian models, and Markov
chain Monte Carlo. We illustrate the central ideas behind each of these techniques by
considering a detailed cognitive modeling application, drawn from causal learning, property
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induction, and language modeling respectively.

2 The basics of Bayesian inference

Many aspects of cognition can be formulated as solutions to problems of induction.
Given some observed data about the world, the mind draws conclusions about the underlying
process or structure that gave rise to these data, and then uses that knowledge to make
predictive judgments about new cases. Bayesian inference is a rational engine for solving
such problems within a probabilistic framework, and consequently is the heart of most
probabilistic models of cognition.

2.1 Bayes’ rule

Bayesian inference grows out of a simple formula known as Bayes’ rule (Bayes,
1763/1958). When stated in terms of abstract random variables, Bayes’ rule is no more
than an elementary result of probability theory. Assume we have two random variables, A

and B.1 One of the principles of probability theory (sometimes called the chain rule) allows
us to write the joint probability of these two variables taking on particular values a and b,
P (a, b), as the product of the conditional probability that A will take on value a given B

takes on value b, P (a|b), and the marginal probability that B takes on value b, P (b). Thus,
we have

P (a, b) = P (a|b)P (b). (1)

There was nothing special about the choice of A rather than B in factorizing the joint
probability in this way, so we can also write

P (a, b) = P (b|a)P (a). (2)

It follows from Equations 1 and 2 that P (a|b)P (b) = P (b|a)P (a), which can be rearranged
to give

P (b|a) =
P (a|b)P (b)

P (a)
. (3)

This expression is Bayes’ rule, which indicates how we can compute the conditional proba-
bility of b given a from the conditional probability of a given b.

While Equation 3 seems relatively innocuous, Bayes’ rule gets its strength, and its
notoriety, when we make some assumptions about the variables we are considering and
the meaning of probability. Assume that we have an agent who is attempting to infer the
process that was responsible for generating some data, d. Let h be a hypothesis about this
process. We will assume that the agent uses probabilities to represent degrees of belief in
h and various alternative hypotheses h′. Let P (h) indicate the probability that the agent
ascribes to h being the true generating process, prior to (or independent of) seeing the data
d. This quantity is known as the prior probability. How should that agent change his beliefs
in light of the evidence provided by d? To answer this question, we need a procedure for

1We will use uppercase letters to indicate random variables, and matching lowercase variables to indicate
the values those variables take on. When defining probability distributions, the random variables will remain
implicit. For example, P (a) refers to the probability that the variable A takes on the value a, which could
also be written P (A = a). We will write joint probabilities in the form P (a, b). Other notations for joint
probabilities include P (a&b) and P (a ∩ b).
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computing the posterior probability, P (h|d), or the degree of belief in h conditioned on the
observation of d.

Bayes’ rule provides just such a procedure, if we treat both the hypotheses that
agents entertain and the data that they observe as random variables, so that the rules of
probabilistic inference can be applied to relate them. Replacing a with d and b with h in
Equation 3 gives

P (h|d) =
P (d|h)P (h)

P (d)
, (4)

the form in which Bayes’ rule is most commonly presented in analyses of learning or induc-
tion. The posterior probability is proportional to the product of the prior probability and
another term P (d|h), the probability of the data given the hypothesis, commonly known
as the likelihood. Likelihoods are the critical bridge from priors to posteriors, re-weighting
each hypothesis by how well it predicts the observed data.

In addition to telling us how to compute with conditional probabilities, probability
theory allows us to compute the probability distribution associated with a single variable
(known as the marginal probability) by summing over other variables in a joint distribution:
e.g., P (b) =

∑

a P (a, b). This is known as marginalization. Using this principle, we can
rewrite Equation 4 as

P (h|d) =
P (d|h)P (h)

∑

h′∈H P (d|h′)P (h′)
, (5)

where H is the set of all hypotheses considered by the agent, sometimes referred to as the
hypothesis space. This formulation of Bayes’ rule makes it clear that the posterior probability
of h is directly proportional to the product of its prior probability and likelihood, relative
to the sum of these same scores – products of priors and likelihoods – for all alternative
hypotheses under consideration. The sum in the denominator of Equation 5 ensures that
the resulting posterior probabilities are normalized to sum to one.

A simple example may help to illustrate the interaction between priors and likelihoods
in determining posterior probabilities. Consider three possible medical conditions that could
be posited to explain why a friend is coughing (the observed data d): h1 = “cold”, h2 =
“lung cancer”, h3 = “stomach flu”. The first hypothesis seems intuitively to be the best
of the three, for reasons that Bayes’ rule makes clear. The probability of coughing given
that one has lung cancer, P (d|h2) is high, but the prior probability of having lung cancer
P (h2) is low. Hence the posterior probability of lung cancer P (h2|d) is low, because it is
proportional to the product of these two terms. Conversely, the prior probability of having
stomach flu P (h3) is relatively high (as medical conditions go), but its likelihood P (d|h3),
the probability of coughing given that one has stomach flu, is relatively low. So again, the
posterior probability of stomach flu, P (h3|d), will be relatively low. Only for hypothesis h1

are both the prior P (h1) and the likelihood P (d|h1) relatively high: colds are fairly common
medical conditions, and coughing is a symptom frequently found in people who have colds.
Hence the posterior probability P (h1|d) of having a cold given that one is coughing is
substantially higher than the posteriors for the competing alternative hypotheses – each of
which is less likely for a different sort of reason.
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2.2 Comparing hypotheses

The mathematics of Bayesian inference is most easily introduced in the context of
comparing two simple hypotheses. For example, imagine that you are told that a box
contains two coins: one that produces heads 50% of the time, and one that produces heads
90% of the time. You choose a coin, and then flip it ten times, producing the sequence
HHHHHHHHHH. Which coin did you pick? How would your beliefs change if you had obtained
HHTHTHTTHT instead?

To formalize this problem in Bayesian terms, we need to identify the hypothesis space,
H, the prior probability of each hypothesis, P (h), and the probability of the data under
each hypothesis, P (d|h). We have two coins, and thus two hypotheses. If we use θ to
denote the probability that a coin produces heads, then h0 is the hypothesis that θ = 0.5,
and h1 is the hypothesis that θ = 0.9. Since we have no reason to believe that one coin is
more likely to be picked than the other, it is reasonable to assume equal prior probabilities:
P (h0) = P (h1) = 0.5. The probability of a particular sequence of coinflips containing NH

heads and NT tails being generated by a coin which produces heads with probability θ is

P (d|θ) = θNH (1 − θ)NT . (6)

Formally, this expression follows from assuming that each flip is drawn independently from
a Bernoulli distribution with parameter θ; less formally, that heads occurs with probability
θ and tails with probability 1 − θ on each flip. The likelihoods associated with h0 and h1

can thus be obtained by substituting the appropriate value of θ into Equation 6.
We can take the priors and likelihoods defined in the previous paragraph, and plug

them directly into Equation 5 to compute the posterior probabilities for both hypotheses,
P (h0|d) and P (h1|d). However, when we have just two hypotheses it is often easier to work
with the posterior odds, or the ratio of these two posterior probabilities. The posterior odds
in favor of h1 is

P (h1|d)

P (h0|d)
=

P (d|h1)

P (d|h0)

P (h1)

P (h0)
, (7)

where we have used the fact that the denominator of Equation 4 or 5 is constant over all
hypotheses. The first and second terms on the right hand side are called the likelihood ratio
and the prior odds respectively. We can use Equation 7 (and the priors and likelihoods de-
fined above) to compute the posterior odds of our two hypotheses for any observed sequence
of heads and tails: for the sequence HHHHHHHHHH, the odds are approximately 357:1 in favor
of h1; for the sequence HHTHTHTTHT, approximately 165:1 in favor of h0.

The form of Equation 7 helps to clarify how prior knowledge and new data are com-
bined in Bayesian inference. The two terms on the right hand side each express the influence
of one of these factors: the prior odds are determined entirely by the prior beliefs of the
agent, while the likelihood ratio expresses how these odds should be modified in light of the
data d. This relationship is made even more transparent if we examine the expression for
the log posterior odds,

log
P (h1|d)

P (h0|d)
= log

P (d|h1)

P (d|h0)
+ log

P (h1)

P (h0)
(8)

in which the extent to which one should favor h1 over h0 reduces to an additive combination
of a term reflecting prior beliefs (the log prior odds) and a term reflecting the contribution



BAYESIAN MODELS 8

of the data (the log likelihood ratio). Based upon this decomposition, the log likelihood
ratio in favor of h1 is often used as a measure of the evidence that d provides for h1.

2.3 Parameter estimation

The analysis outlined above for two simple hypotheses generalizes naturally to any
finite set, although posterior odds may be less useful when there are multiple alternatives to
be considered. Bayesian inference can also be applied in contexts where there are (uncount-
ably) infinitely many hypotheses to evaluate – a situation that arises often. For example,
instead of choosing between just two possible values for the probability θ that a coin pro-
duces heads, we could consider any real value of θ between 0 and 1. What then should we
infer about the value of θ from a sequence such as HHHHHHHHHH?

Under one classical approach, inferring θ is treated as a problem of estimating a
fixed parameter of a probabilistic model, to which the standard solution is maximum-
likelihood estimation (see, e.g., Rice, 1995). Maximum-likelihood estimation is simple and
often sensible, but can also be problematic – particularly as a way to think about human
inference. Our coinflipping example illustrates some of these problems. The maximum-
likelihood estimate of θ is the value θ̂ that maximizes the probability of the data as given
in Equation 6. It is straightforward to show that θ̂ = NH

NH+NT
, which gives θ̂ = 1.0 for the

sequence HHHHHHHHHH.
It should be immediately clear that the single value of θ which maximizes the proba-

bility of the data might not provide the best basis for making predictions about future data.
Inferring that θ is exactly 1 after seeing the sequence HHHHHHHHHH implies that we should
predict that the coin will never produce tails. This might seem reasonable after observing
a long sequence consisting solely of heads, but the same conclusion follows for an all-heads
sequences of any length (because NT is always 0, so NH

NH+NT
is always 1). Would you really

predict that a coin would produce only heads after seeing it produce a head on just one or
two flips?

A second problem with maximum-likelihood estimation is that it does not take into
account other knowledge that we might have about θ. This is largely by design: maximum-
likelihood estimation and other classical statistical techniques have historically been pro-
moted as “objective” procedures that do not require prior probabilities, which were seen as
inherently and irremediably subjective. While such a goal of objectivity might be desirable
in certain scientific contexts, cognitive agents typically do have access to relevant and pow-
erful prior knowledge, and they use that knowledge to make stronger inferences from sparse
and ambiguous data than could be rationally supported by the data alone. For example,
given the sequence HHH produced by flipping an apparently normal, randomly chosen coin,
many people would say that the coin’s probability of producing heads is nonetheless around
0.5 – perhaps because we have strong prior expectations that most coins are nearly fair.

Both of these problems are addressed by a Bayesian approach to inferring θ. If we
assume that θ is a random variable, then we can apply Bayes’ rule to obtain

p(θ|d) =
P (d|θ)p(θ)

P (d)
, (9)

where

P (d) =

∫ 1

0
P (d|θ)p(θ) dθ. (10)
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The key difference from Bayesian inference with finitely many hypotheses is that our beliefs
about the hypotheses (both priors and posteriors) are now characterized by probability
densities (notated by a lowercase “p”) rather than probabilities strictly speaking, and the
sum over hypotheses becomes an integral.

The posterior distribution over θ contains more information than a single point esti-
mate: it indicates not just which values of θ are probable, but also how much uncertainty
there is about those values. Collapsing this distribution down to a single number discards
information, so Bayesians prefer to maintain distributions wherever possible (this attitude
is similar to Marr’s (1982, p. 106) “principle of least commitment”). However, there are two
methods that are commonly used to obtain a point estimate from a posterior distribution.
The first method is maximum a posteriori (MAP) estimation: choosing the value of θ that
maximizes the posterior probability, as given by Equation 9. The second method is comput-
ing the posterior mean of the quantity in question: a weighted average of all possible values
of the quantity, where the weights are given by the posterior distribution. For example, the
posterior mean value of the coin weight θ is computed as follows:

θ̄ =

∫ 1

0
θ p(θ|d) dθ. (11)

In the case of coinflipping, the posterior mean also corresponds to the posterior predictive
distribution: the probability that the next toss of the coin will produce heads, given the
observed sequence of previous flips.

Different choices of the prior, p(θ), will lead to different inferences about the value
of θ. A first step might be to assume a uniform prior over θ, with p(θ) being equal for all
values of θ between 0 and 1 (more formally, p(θ) = 1 for θ ∈ [0, 1]). With this choice of p(θ)
and the Bernoulli likelihood from Equation 6, Equation 9 becomes

p(θ). =
θNH (1 − θ)NT

∫ 1
0 θNH (1 − θ)NT dθ

(12)

where the denominator is just the integral from Equation 10. Using a little calculus to
compute this integral, the posterior distribution over θ produced by a sequence d with NH

heads and NT tails is

p(θ|d) =
(NH + NT + 1)!

NH ! NT !
θNH (1 − θ)NT . (13)

This is actually a distribution of a well known form: a beta distribution with parameters
NH + 1 and NT + 1, denoted Beta(NH + 1, NT + 1) (e.g., Pitman, 1993). Using this prior,
the MAP estimate for θ is the same as the maximum-likelihood estimate, NH

NH+NT
, but the

posterior mean is slightly different, NH+1
NH+NT +2 . Thus, the posterior mean is sensitive to the

consideration that we might not want to put as much evidential weight on seeing a single
head as on a sequence of ten heads in a row: on seeing a single head, the posterior mean
predicts that the next toss will produce a head with probability 2

3 , while a sequence of ten
heads leads to the prediction that the next toss will produce a head with probability 11

12 .
We can also use priors that encode stronger beliefs about the value of θ. For example,

we can take a Beta(VH + 1, VT + 1) distribution for p(θ), where VH and VT are positive



BAYESIAN MODELS 10

integers. This distribution gives

p(θ) =
(VH + VT + 1)!

VH !VT !
θVH (1 − θ)VT (14)

having a mean at VH+1
VH+VT +2 , and gradually becoming more concentrated around that mean as

VH +VT becomes large. For instance, taking VH = VT = 1000 would give a distribution that
strongly favors values of θ close to 0.5. Using such a prior with the Bernoulli likelihood from
Equation 6 and applying the same kind of calculations as above, we obtain the posterior
distribution

p(θ|d) =
(NH + NT + VH + VT + 1)!

(NH + VH)! (NT + VT )!
θNH+VH (1 − θ)NT +VT , (15)

which is Beta(NH + VH + 1, NT + VT + 1). Under this posterior distribution, the MAP
estimate of θ is NH+VH

NH+NT +VH+VT
, and the posterior mean is NH+VH+1

NH+NT +VH+VT +2 . Thus, if VH =
VT = 1000, seeing a sequence of ten heads in a row would induce a posterior distribution
over θ with a mean of 1011

2012 ≈ 0.5025. In this case, the observed data matter hardly at
all. A prior that is much weaker but still biased towards approximately fair coins might
take VH = VT = 5. Then an observation of ten heads in a row would lead to a posterior
mean of 16

22 ≈ .727, significantly tilted towards heads but still closer to a fair coin than the
observed data would suggest on their own. We can say that such a prior acts to “smooth” or
“regularize” the observed data, damping out what might be misleading fluctuations when
the data are far from the learner’s initial expectations. On a larger scale, these principles of
Bayesian parameter estimation with informative “smoothing” priors have been applied to
a number of cognitively interesting machine-learning problems, such as Bayesian learning
in neural networks (Mackay, 2003).

Our analysis of coin flipping with informative priors has two features of more general
interest. First, the prior and posterior are specified using distributions of the same form
(both being beta distributions). Second, the parameters of the prior, VH and VT , act as
“virtual examples” of heads and tails, which are simply pooled with the real examples
tallied in NH and NT to produce the posterior, as if both the real and virtual examples
had been observed in the same data set. These two properties are not accidental: they are
characteristic of a class of priors called conjugate priors (e.g., Bernardo & Smith, 1994). The
likelihood determines whether a conjugate prior exists for a given problem, and the form
that the prior will take. The results we have given in this section exploit the fact that the
beta distribution is the conjugate prior for the Bernoulli or binomial likelihood (Equation 6)
– the uniform distribution on [0, 1] is also a beta distribution, being Beta(1, 1). Conjugate
priors exist for many of the distributions commonly used in probabilistic models, such
as Gaussian, Poisson, and multinomial distributions, and greatly simplify many Bayesian
calculations. Using conjugate priors, posterior distributions can be computed analytically,
and the interpretation of the prior as contributing virtual examples is intuitive.

While conjugate priors are elegant and practical to work with, there are also impor-
tant forms of prior knowledge that they cannot express. For example, they can capture
the notion of smoothness in simple linear predictive systems but not in more complex non-
linear predictors such as multilayer neural networks. Crucially for modelers interested in
higher-level cognition, conjugate priors cannot capture knowledge that the causal process
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generating the observed data could take on one of several qualitatively different forms. Still,
they can sometimes be used to address questions of selecting models of different complexity,
as we do in the next section, when the different models under consideration have the same
qualitative form. A major area of current research in Bayesian statistics and machine learn-
ing focuses on building more complex models that maintain the benefits of working with
conjugate priors, building on the techniques for model selection that we discuss next (e.g.,
Neal, 1992, 1998; Blei, Griffiths, Jordan, & Tenenbaum, 2004; Griffiths & Ghahramani,
2005).

2.4 Model selection

Whether there were a finite number or not, the hypotheses that we have considered
so far were relatively homogeneous, each offering a single value for the parameter θ char-
acterizing our coin. However, many problems require comparing hypotheses that differ in
their complexity. For example, the problem of inferring whether a coin is fair or biased
based upon an observed sequence of heads and tails requires comparing a hypothesis that
gives a single value for θ – if the coin is fair, then θ = 0.5 – with a hypothesis that allows θ

to take on any value between 0 and 1.

Using observed data to choose between two probabilistic models that differ in their
complexity is often called the problem of model selection (Myung & Pitt, 1997; Myung,
Forster, & Browne, 2000). One familiar statistical approach to this problem is via hypothesis
testing, but this approach is often complex and counter-intuitive. In contrast, the Bayesian
approach to model selection is a seamless application of the methods discussed so far.
Hypotheses that differ in their complexity can be compared directly using Bayes’ rule, once
they are reduced to probability distributions over the observable data (see Kass & Raftery,
1995).

To illustrate this principle, assume that we have two hypotheses: h0 is the hypothesis
that θ = 0.5, and h1 is the hypothesis that θ takes a value drawn from a uniform distribution
on [0, 1]. If we have no a priori reason to favor one hypothesis over the other, we can take
P (h0) = P (h1) = 0.5. The probability of the data under h0 is straightforward to compute,
using Equation 6, giving P (d|h0) = 0.5NH+NT . But how should we compute the likelihood
of the data under h1, which does not make a commitment to a single value of θ?

The solution to this problem is to compute the marginal probability of the data under
h1. As discussed above, given a joint distribution over a set of variables, we can always sum
out variables until we obtain a distribution over just the variables that interest us. In this
case, we define the joint distribution over d and θ given h1, and then integrate over θ to
obtain

P (d|h1) =

∫ 1

0
P (d|θ, h1)p(θ|h1) dθ (16)

where p(θ|h1) is the distribution over θ assumed under h1 – in this case, a uniform distri-
bution over [0, 1]. This does not require any new concepts – it is exactly the same kind of
computation as we needed to perform to compute the denominator for the posterior distribu-
tion over θ (Equation 10). Performing this computation, we obtain P (d|h1) = NH ! NT !

(NH+NT +1)! ,
where again the fact that we have a conjugate prior provides us with a neat analytic result.
Having computed this likelihood, we can apply Bayes’ rule just as we did for two simple
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hypotheses. Figure 1a shows how the log posterior odds in favor of h1 change as NH and
NT vary for sequences of length 10.

The ease with which hypotheses differing in complexity can be compared using Bayes’
rule conceals the fact that this is actually a very challenging problem. Complex hypotheses
have more degrees of freedom that can be adapted to the data, and can thus always be made
to fit the data better than simple hypotheses. For example, for any sequence of heads and
tails, we can always find a value of θ that would give higher probability to that sequence than
does the hypothesis that θ = 0.5. It seems like a complex hypothesis would thus have an
inherent unfair advantage over a simple hypothesis. The Bayesian solution to the problem of
comparing hypotheses that differ in their complexity takes this into account. More degrees
of freedom provide the opportunity to find a better fit to the data, but this greater flexibility
also makes a worse fit possible. For example, for d consisting of the sequence HHTHTTHHHT,
P (d|θ, h1) is greater than P (d|h0) for θ ∈ (0.5, 0.694], but is less than P (d|h0) outside that
range. Marginalizing over θ averages these gains and losses: a more complex hypothesis will
be favored only if its greater complexity consistently provides a better account of the data.
To phrase this principle another way, a Bayesian learner judges the fit of a parameterized
model not by how well it fits using the best parameter values, but by how well it fits using
randomly selected parameters, where the parameters are drawn from a prior specified by the
model (p(θ|h1) in Equation 16) (Ghahramani, 2004). This penalization of more complex
models is known as the “Bayesian Occam’s razor” (Jeffreys & Berger, 1992; Mackay, 2003),
and is illustrated in Figure 1b.

2.5 Summary

Bayesian inference stipulates how rational learners should update their beliefs in the
light of evidence. The principles behind Bayesian inference can be applied whenever we are
making inferences from data, whether the hypotheses involved are discrete or continuous,
or have one or more unspecified free parameters. However, developing probabilistic models
that can capture the richness and complexity of human cognition requires going beyond
these basic ideas. In the remainder of the chapter we will summarize several recent tools
that have been developed in computer science and statistics for defining and using complex
probabilistic models, and provide examples of how they can be used in modeling human
cognition.

3. Graphical models

Our discussion of Bayesian inference above was formulated in the language of “hy-
potheses” and “data”. However, the principles of Bayesian inference, and the idea of using
probabilistic models, extend to much richer settings. In its most general form, a probabilistic
model simply defines the joint distribution for a system of random variables. Representing
and computing with these joint distributions becomes challenging as the number of vari-
ables grows, and their properties can be difficult to understand. Graphical models provide
an efficient and intuitive framework for working with high-dimensional probability distribu-
tions, which is applicable when these distributions can be viewed as the product of smaller
components defined over local subsets of variables.

A graphical model associates a probability distribution with a graph. The nodes of
the graph represent the variables on which the distribution is defined, the edges between the
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Figure 1. Comparing hypotheses about the weight of a coin. (a) The vertical axis shows log
posterior odds in favor of h1, the hypothesis that the probability of heads (θ) is drawn from a uniform
distribution on [0, 1], over h0, the hypothesis that the probability of heads is 0.5. The horizontal
axis shows the number of heads, NH , in a sequence of 10 flips. As NH deviates from 5, the posterior
odds in favor of h1 increase. (b) The posterior odds shown in (a) are computed by averaging over
the values of θ with respect to the prior, p(θ), which in this case is the uniform distribution on
[0, 1]. This averaging takes into account the fact that hypotheses with greater flexibility – such as
the free-ranging θ parameter in h1 – can produce both better and worse predictions, implementing
an automatic “Bayesian Occam’s razor”. The solid line shows the probability of the sequence
HHTHTTHHHT for different values of θ, while the dotted line is the probability of any sequence of
length 10 under h0 (equivalent to θ = 0.5). While there are some values of θ that result in a higher
probability for the sequence, on average the greater flexibility of h1 results in lower probabilities.
Consequently, h0 is favored over h1 (this sequence has NH = 6). In contrast, a wide range of values
of θ result in higher probability for for the sequence HHTHHHTHHH, as shown by the dashed line.
Consequently, h1 is favored over h0 (this sequence has NH = 8).
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nodes reflect their probabilistic dependencies, and a set of functions relating nodes and their
neighbors in the graph are used to define a joint distribution over all of the variables based on
those dependencies. There are two kinds of graphical models, differing in the nature of the
edges that connect the nodes. If the edges simply indicate a dependency between variables,
without specifying a direction, then the result is an undirected graphical model. Undirected
graphical models have long been used in statistical physics, and many probabilistic neural
network models, such as Boltzmann machines (Ackley, Hinton, & Sejnowski, 1985), can be
interpreted as models of this kind. If the edges indicate the direction of a dependency, the
result is a directed graphical model. Our focus here will be on directed graphical models,
which are also known as Bayesian networks or Bayes nets (Pearl, 1988). Bayesian networks
can often be given a causal interpretation, where an edge between two nodes indicates
that one node is a direct cause of the other, which makes them particularly appealing for
modeling higher-level cognition.

3.1 Bayesian networks

A Bayesian network represents the probabilistic dependencies relating a set of vari-
ables. If an edge exists from node A to node B, then A is referred to as a “parent” of
B, and B is a “child” of A. This genealogical relation is often extended to identify the
“ancestors” and “descendants” of a node. The directed graph used in a Bayesian network
has one node for each random variable in the associated probability distribution, and is
constrained to be acyclic: one can never return to the same node by following a sequence of
directed edges. The edges express the probabilistic dependencies between the variables in
a fashion consistent with the Markov condition: conditioned on its parents, each variable is
independent of all other variables except its descendants (Pearl, 1988; Spirtes, Glymour, &
Schienes, 1993). As a consequence of the Markov condition, any Bayesian network specifies
a canonical factorization of a full joint probability distribution into the product of local
conditional distributions, one for each variable conditioned on its parents. That is, for a
set of variables X1,X2, . . . ,XN , we can write P (x1, x2, . . . , xN ) =

∏

i P (xi|Pa(Xi)) where
Pa(Xi) is the set of parents of Xi.

Bayesian networks provide an intuitive representation for the structure of many prob-
abilistic models. For example, in the previous section we discussed the problem of estimating
the weight of a coin, θ. One detail that we left implicit in that discussion was the assumption
that successive coin flips are independent, given a value for θ. This conditional independence
assumption is expressed in the graphical model shown in Figure 2a, where x1, x2, . . . , xN

are the outcomes (heads or tails) of N successive tosses. Applying the Markov condition,
this structure represents the probability distribution

P (x1, x2, . . . , xN , θ) = p(θ)
N
∏

i=1

P (xi|θ) (17)

in which the xi are independent given the value of θ. Other dependency structures are
possible. For example, the flips could be generated in a Markov chain, a sequence of random
variables in which each variable is independent of all of its predecessors given the variable
that immediately precedes it (e.g., Norris, 1997). Using a Markov chain structure, we could
represent a hypothesis space of coins that are particularly biased towards alternating or
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maintaining their last outcomes, letting the parameter θ be the probability that the outcome
xi takes the same value as xi−1 (and assuming that x1 is heads with probability 0.5). This
distribution would correspond to the graphical model shown in Figure 2b. Applying the
Markov condition, this structure represents the probability distribution

P (x1, x2, . . . , xN , θ) = p(θ)P (x1)

N
∏

i=2

P (xi|xi−1θ), (18)

in which each xi depends only on xi−1, given θ. More elaborate structures are also possible:
any directed acyclic graph on x1, x2, . . . , xN and θ corresponds to a valid set of assumptions
about the dependencies among these variables.

When introducing the basic ideas behind Bayesian inference, we emphasized the fact
that hypotheses correspond to different assumptions about the process that could have
generated some observed data. Bayesian networks help to make this idea transparent.
Every Bayesian network indicates a sequence of steps that one could follow in order to
generate samples from the joint distribution over the random variables in the network.
First, one samples the values of all variables with no parents in the graph. Then, one
samples the variables with parents taking known values, one after another. For example,
in the structure shown in Figure 2b, we would sample θ from the distribution p(θ), then
sample x1 from the distribution P (x1), then successively sample xi from P (xi|xi−1, θ) for
i = 2, . . . , N . A set of probabilistic steps that can be followed to generate the values of a
set of random variables is known as a generative model, and the directed graph associated
with a probability distribution provides an intuitive representation for the steps that are
involved in such a model.

For the generative models represented by Figure 2a or 2b, we have assumed that all
variables except θ are observed in each sample from the model, or each data point. More
generally, generative models can include a number of steps that make reference to unob-
served or latent variables. Introducing latent variables can lead to apparently complicated
dependency structures among the observable variables. For example, in the graphical model
shown in Figure 2c, a sequence of latent variables z1, z2, . . . , zN influences the probability
that each respective coin flip in a sequence x1, x2, . . . , xN comes up heads (in conjunction
with a set of parameters φ). The latent variables form a Markov chain, with the value of zi

depending only on the value of zi−1 (in conjunction with the parameters θ). This model,
called a hidden Markov model, is widely used in computational linguistics, where zi might
be the syntactic class (such as noun or verb) of a word, θ encodes the probability that
a word of one class will appear after another (capturing simple syntactic constraints on
the structure of sentences), and φ encodes the probability that each word will be generated
from a particular syntactic class (e.g., Charniak, 1993; Jurafsky & Martin, 2000; Manning &
Schütze, 1999). The dependencies among the latent variables induce dependencies among
the observed variables – in the case of language, the constraints on transitions between
syntactic classes impose constraints on which words can follow one another.

3.2 Representing probability distributions over propositions

Our treatment of graphical models in the previous section – as representations of
the dependency structure among variables in generative models for data – follows their
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Figure 2. Graphical models showing different kinds of processes that could generate a sequence
of coinflips. (a) Independent flips, with parameters θ determining the probability of heads. (b) A
Markov chain, where the probability of heads depends on the result of the previous flip. Here the
parameters θ define the probability of heads after a head and after a tail. (c) A hidden Markov
model, in which the probability of heads depends on a latent state variable zi. Transitions between
values of the latent state are set by parameters θ, while other parameters φ determine the probability
of heads for each value of the latent state. This kind of model is commonly used in computational
linguistics, where the xi might be the sequence of words in a document, and the zi the syntactic
classes from which they are generated.
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Figure 3. Directed graphical model (Bayesian network) showing the dependencies among variables
in the “psychic friend” example discussed in the text.

standard uses in the fields of statistics and machine learning. Graphical models can take on
a different interpretation in artificial intelligence, when the variables of interest represent
the truth value of certain propositions (Russell & Norvig, 2002). For example, imagine that
a friend of yours claims to possess psychic powers – in particular, the power of psychokinesis.
He proposes to demonstrate these powers by flipping a coin, and influencing the outcome
to produce heads. You suggest that a better test might be to see if he can levitate a
pencil, since the coin producing heads could also be explained by some kind of sleight of
hand, such as substituting a two-headed coin. We can express all possible outcomes of
the proposed tests, as well as their causes, using the binary random variables X1, X2, X3,
and X4 to represent (respectively) the truth of the coin being flipped and producing heads,
the pencil levitating, your friend having psychic powers, and the use of a two-headed coin.
Any set of beliefs about these outcomes can be encoded in a joint probability distribution,
P (x1, x2, x3, x4). For example, the probability that the coin comes up heads (x1 = 1)
should be higher if your friend actually does have psychic powers (x3 = 1). Figure 3 shows
a Bayesian network expressing a possible pattern of dependencies among these variables.
For example, X1 and X2 are assumed to be independent given X3, indicating that once it
was known whether or not your friend was psychic, the outcomes of the coin flip and the
levitation experiments would be completely unrelated. By the Markov condition, we can
write P (x1, x2, x3, x4) = P (x1|x3, x4)P (x2|x3)P (x3)P (x4).

In addition to clarifying the dependency structure of a set of random variables,
Bayesian networks provide an efficient way to represent and compute with probability
distributions. In general, a joint probability distribution on N binary variables requires
2N − 1 numbers to specify (one for each set of joint values taken by the variables, minus
one because of the constraint that probability distributions sum to 1). In the case of the
psychic friend example, where there are four variables, this would be 24 − 1 = 15 numbers.
However, the factorization of the joint distribution over these variables allows us to use
fewer numbers in specifying the distribution over these four variables. We only need one
number for each variable conditioned on each possible set of values its parents can take, or
2|Pa(Xi)| numbers for each variable Xi (where |Pa(Xi)| is the size of the parent set of Xi).
For our “psychic friend” network, this adds up to 8 numbers rather than 15, because X3

and X4 have no parents (contributing one number each), X2 has one parent (contributing
two numbers), and X1 has two parents (contributing four numbers). Recognizing the struc-
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ture in this probability distribution can also greatly simplify the computations we want to
perform. When variables are independent or conditionally independent of others, it reduces
the number of terms that appear in sums over subsets of variables necessary to compute
marginal beliefs about a variable or conditional beliefs about a variable given the values of
one or more other variables. A variety of algorithms have been developed to perform these
probabilistic inferences efficiently on complex models, by recognizing and exploiting condi-
tional independence structures in Bayesian networks (Pearl, 1988; Mackay, 2003). These
algorithms form the heart of many modern artificial intelligence systems, making it possible
to reason efficiently under uncertainty (Korb & Nicholson, 2003; Russell & Norvig, 2002).

3.3 Causal graphical models

In a standard Bayesian network, edges between variables indicate only statistical de-
pendencies between them. However, recent work has explored the consequences of augment-
ing directed graphical models with a stronger assumption about the relationships indicated
by edges: that they indicate direct causal relationships (Pearl, 2000; Spirtes et al., 1993).
This assumption allows causal graphical models to represent not just the probabilities of
events that one might observe, but also the probabilities of events that one can produce
through intervening on a system. The inferential implications of an event can differ strongly,
depending on whether it was observed passively or under conditions of intervention. For
example, observing that nothing happens when your friend attempts to levitate a pencil
would provide evidence against his claim of having psychic powers; but secretly intervening
to hold the pencil down while your friend attempts to levitate it would make the pencil’s
non-levitation unsurprising and uninformative about his powers.

In causal graphical models, the consequences of intervening on a particular variable
can be assessed by removing all incoming edges to that variable and performing probabilis-
tic inference in the resulting “mutilated” model (Pearl, 2000). This procedure produces
results that align with our intuitions in the psychic powers example: intervening on X2

breaks its connection with X3, rendering the two variables independent. As a consequence,
X2 cannot provide evidence about the value of X3. Several recent papers have investi-
gated whether people are sensitive to the consequences of intervention, generally finding
that people differentiate between observational and interventional evidence appropriately
(Hagmayer, Sloman, Lagnado, & Waldmann, in press; Lagnado & Sloman, 2004; Steyvers
et al., 2003). Introductions to causal graphical models that consider applications to human
cognition are provided by Glymour (2001) and Sloman (2005).

The prospect of using graphical models to express the probabilistic consequences of
causal relationships has led researchers in several fields to ask whether these models could
serve as the basis for learning causal relationships from data. Every introductory class
in statistics teaches that “correlation does not imply causation”, but the opposite is true:
patterns of causation do imply patterns of correlation. A Bayesian learner should thus be
able to work backwards from observed patterns of correlation (or statistical dependency) to
make probabilistic inferences about the underlying causal structures likely to have generated
those observed data. We can use the same basic principles of Bayesian inference developed
in the previous section, where now the data are samples from an unknown causal graphical
model and the hypotheses to be evaluated are different candidate graphical models. For
technical introductions to the methods and challenges of learning causal graphical models,
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Table 1: Contingency Table Representation used in Elemental Causal Induction

Effect Present (e+) Effect Absent (e−)

Cause Present (c+) N(e+, c+) N(e−, c+)
Cause Absent (c−) N(e+, c−) N(e−, c−)

see Heckerman (1998) and Glymour and Cooper (1999).

As in the previous section, it is valuable to distinguish between the problems of
parameter estimation and model selection. In the context of causal learning, model selection
becomes the problem of determining the graph structure of the causal model – which causal
relationships exist – and parameter estimation becomes the problem of determining the
strength and polarity of the causal relations specified by a given graph structure. We will
illustrate the differences between these two aspects of causal learning, and how graphical
models can be brought into contact with empirical data on human causal learning, with a
task that has been extensively studied in the cognitive psychology literature: judging the
status of a single causal relationship between two variables based on contingency data.

3.4 Example: Causal induction from contingency data

Much psychological research on causal induction has focused upon this simple causal
learning problem: given a candidate cause, C, and a candidate effect, E, people are asked to
give a numerical rating assessing the degree to which C causes E.2 We refer to tasks of this
sort as “elemental causal induction” tasks. The exact wording of the judgment question
varies and until recently was not the subject of much attention, although as we will see
below it is potentially quite important. Most studies present information corresponding
to the entries in a 2 × 2 contingency table, as in Table 1. People are given information
about the frequency with which the effect occurs in the presence and absence of the cause,
represented by the numbers N(e+, c+), N(e−, c−) and so forth. In a standard example,
C might be injecting a chemical into a mouse, and E the expression of a particular gene.
N(e+, c+) would be the number of injected mice expressing the gene, while N(e−, c−) would
be the number of uninjected mice not expressing the gene.

The leading psychological models of elemental causal induction are measures of as-
sociation that can be computed from simple combinations of the frequencies in Table 1. A
classic model first suggested by Jenkins and Ward (1965) asserts that the degree of causation
is best measured by the quantity

∆P =
N(e+, c+)

N(e+, c+) + N(e−, c+)
−

N(e+, c−)

N(e+, c−) + N(e−, c−)
= P (e+|c+) − P (e+|c−), (19)

where P (e+|c+) is the empirical conditional probability of the effect given the presence of
the cause, estimated from the contingency table counts N(·). ∆P thus reflects the change
in the probability of the effect occurring as a consequence of the occurrence of the cause.

2As elsewhere in this chapter, we will represent variables such as C, E with capital letters, and their
instantiations with lowercase letters, with c+, e+ indicating that the cause or effect is present, and c−, e−

indicating that the cause or effect is absent.
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More recently, Cheng (1997) has suggested that people’s judgments are better captured by
a measure called “causal power”,

power =
∆P

1 − P (e+|c−)
. (20)

which takes ∆P as a component, but predicts that ∆P will have a greater effect when
P (e+|c−) is large.

Several experiments have been conducted with the aim of evaluating ∆P and causal
power as models of human jugments. In one such study, Buehner and Cheng (1997, Exper-
iment 1B; this experiment also appears in Buehner, Cheng, & Clifford, 2003) asked people
to evaluate causal relationships for 15 sets of contingencies expressing all possible combina-
tions of P (e+|c−) and ∆P in increments of 0.25. The results of this experiment are shown
in Figure 4, together with the predictions of ∆P and causal power. As can be seen from
the figure, both ∆P and causal power capture some of the trends in the data, producing
correlations of r = 0.89 and r = 0.88 respectively. However, since the trends predicted by
the two models are essentially orthogonal, neither model provides a complete account of the
data.3

∆P and causal power seem to capture some important elements of human causal
induction, but miss others. We can gain some insight into the assumptions behind these
models, and identify some possible alternative models, by considering the computational
problem behind causal induction using the tools of causal graphical models and Bayesian
inference. The task of elemental causal induction can be seen as trying to infer which
causal graphical model best characterizes the relationship between the variables C and E.
Figure 5 shows two possible causal structures relating C, E, and another variable B which
summarizes the influence of all of the other “background” causes of E (which are assumed
to be constantly present). The problem of learning which causal graphical model is correct
has two aspects: inferring the right causal structure, a problem of model selection, and
determining the right parameters assuming a particular structure, a problem of parameter
estimation.

In order to formulate the problems of model selection and parameter estimation more
precisely, we need to make some further assumptions about the nature of the causal graph-
ical models shown in Figure 5. In particular, we need to define the form of the conditional
probability distribution P (E|B,C) for the different structures, often called the parameteri-
zation of the graphs. Sometimes the parameterization is trivial – for example, C and E are
independent in Graph 0, so we just need to specify P0(E|B), where the subscript indicates
that this probability is associated with Graph 0. This can be done using a single numerical
parameter w0 which provides the probability that the effect will be present in the presence
of the background cause, P0(e

+|b+;w0) = w0. However, when a node has multiple parents,
there are many different ways in which the functional relationship between causes and ef-
fects could be defined. For example, in Graph 1 we need to account for how the causes B

and C interact in producing the effect E.
A simple and widely used parameterization for Bayesian networks of binary variables

is the noisy-OR distribution (Pearl, 1988). The noisy-OR can be given a natural interpre-

3See Griffiths and Tenenbaum (2005) for the details of how these correlations were evaluated, using a
power-law transformation to allow for nonlinearities in participants’ judgment scales.
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Figure 5. Directed graphs involving three variables, B, C, E, relevant to elemental causal induc-
tion. B represents background variables, C a potential causal variable, and E the effect of interest.
Graph 1is assumed in computing ∆P and causal power. Computing causal support involves com-
paring the structure of Graph 1 to that of Graph 0in which C and E are independent.
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tation in terms of causal relations between multiple causes and a single joint effect. For
Graph 1, these assumptions are that B and C are both generative causes, increasing the
probability of the effect; that the probability of E in the presence of just B is w0, and in the
presence of just C is w1; and that, when both B and C are present, they have independent
opportunities to produce the effect. This parameterization can be represented in a compact
mathematical form as

P1(e
+|b, c;w0, w1) = 1 − (1 − w0)

b(1 − w1)
c, (21)

where w0, w1 are parameters associated with the strength of B,C respectively. The variable
c is 1 if the cause is present (c+) or 0 if the cause if is absent (c−), and likewise for the
variable b with the background cause. This expression gives w0 for the probability of E in
the presence of B alone, and w0 + w1 − w0w1 for the probability of E in the presence of
both B and C. This parameterization is called a noisy-OR because if w0 and w1 are both
1, Equation 21 reduces to the logical OR function: the effect occurs if and only if B or C

are present, or both. With w0 and w1 in the range [0, 1], the noisy-OR softens this function
but preserves its essentially disjunctive interaction: the effect occurs if and only if B causes
it (which happens with probability w0) or C causes it (which happens with probability w1),
or both.

An alternative to the noisy-OR might be a linear parameterization of Graph 1, assert-
ing that the probability of E occurring is a linear function of B and C. This corresponds to
assuming that the presence of a cause simply increases the probability of an effect by a con-
stant amount, regardless of any other causes that might be present. There is no distinction
between generative and preventive causes. The result is

P1(e
+|b, c;w0, w1) = w0 · b + w1 · c. (22)

This parameterization requires that we constrain w0 + w1 to lie between 0 and 1 to ensure
that Equation 22 results in a legal probability distribution. Because of this dependence
between parameters that seem intuitively like they should be independent, such a linear
parameterization is not normally used in Bayesian networks. However, it is relevant for
understanding models of human causal induction.

Given a particular causal graph structure and a particular parameterization – for
example, Graph 1 parameterized with a noisy-OR function – inferring the strength param-
eters that best characterize the causal relationships in that model is straightforward. We
can use any of the parameter-estimation methods discussed in the previous section (such as
maximum-likelihood or MAP estimation) to find the values of the parameters (w0 and w1

in Graph 1) that best fit a set of observed contingencies. Tenenbaum and Griffiths (2001;
Griffiths & Tenenbaum, 2005) showed that the two psychological models of causal induc-
tion introduced above – ∆P and causal power – both correspond to maximum-likelihood
estimates of the causal strength parameter w1, but under different assumptions about the
parameterization of Graph 1. ∆P results from assuming the linear parameterization, while
causal power results from assuming the noisy-OR.

This view of ∆P and causal power helps to reveal their underlying similarities and
differences: they are similar in being maximum-likelihood estimates of the strength param-
eter describing a causal relationship, but differ in the assumptions that they make about
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the form of that relationship. This analysis also suggests another class of models of causal
induction that has not until recently been explored: models of learning causal graph struc-
ture, or causal model selection rather than parameter estimation. Recalling our discussion
of model selection, we can express the evidence that a set of contingencies d provide in favor
of the existence of a causal relationship (i.e., Graph 1 over Graph 0) as the log-likelihood
ratio in favor of Graph 1. Terming this quantity “causal support”, we have

support = log
P (d|Graph 1)

P (d|Graph 0)
(23)

where P (d|Graph 1) and P (d|Graph 0) are computed by integrating over the parameters
associated with the different structures

P (d|Graph 1) =

∫ 1

0

∫ 1

0
P1(d|w0, w1,Graph 1) P (w0, w1|Graph 1) dw0 dw1 (24)

P (d|Graph 0) =

∫ 1

0
P0(d|w0,Graph 0) P (w0|Graph 0) dw0. (25)

Tenenbaum and Griffiths (2001; Griffiths & Tenenbaum, 2005) proposed this model, and
specifically assumed a noisy-OR parameterization for Graph 1 and uniform priors on w0

and w1. Equation 25 is identical to Equation 16 and has an analytic solution. Evaluating
Equation 24 is more of a challenge, but one that we will return to later in this chapter when
we discuss Monte Carlo methods for approximate probabilistic inference.

The results of computing causal support for the stimuli used by Buehner and Cheng
(1997) are shown in Figure 4. Causal support provides an excellent fit to these data,
with r = 0.97. The model captures the trends predicted by both ∆P and causal power,
as well as trends that are predicted by neither model. These results suggest that when
people evaluate contingency, they may be taking into account the evidence that those data
provide for a causal relationship as well as the strength of the relationship they suggest.
The figure also shows the predictions obtained by applying the χ2 measure to these data,
a standard hypothesis-testing method of assessing the evidence for a relationship (and a
common ingredient in non-Bayesian approaches to structure learning, e.g. Spirtes et al.,
1993). These predictions miss several important trends in the human data, suggesting that
the ability to assert expectations about the nature of a causal relationship that go beyond
mere dependency (such as the assumption of a noisy-OR parameterization), is contributing
to the success of this model. Causal support predicts human judgments on several other
datasets that are problematic for ∆P and causal power, and also accommodates causal
learning based upon the rate at which events occur (see Griffiths & Tenenbaum, 2005, for
more details).

The Bayesian approach to causal induction can be extended to cover a variety of more
complex cases, including learning in larger causal networks (Steyvers et al., 2003), learning
about dynamic causal relationships in physical systems (Tenenbaum & Griffiths, 2003),
choosing which interventions to perform in the aid of causal learning (Steyvers et al., 2003),
learning about hidden causes (Griffiths, Baraff, & Tenenbaum, 2004) and distinguishing
hidden common causes from mere coincidences (Griffiths & Tenenbaum, 2007a), and online
learning from sequentially presented data (Danks, Griffiths, & Tenenbaum, 2003).
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Modeling learning in these more complex cases often requires us to work with stronger
and more structured prior distributions than were needed above to explain elemental causal
induction. This prior knowledge can be usefully described in terms of intuitive domain
theories (Carey, 1985; Wellman & Gelman, 1992; Gopnik & Meltzoff, 1997), systems of
abstract concepts and principles that specify the kinds of entities that can exist in a domain,
their properties and possible states, and the kinds of causal relations that can exist between
them. We have begun to explore how these abstract causal theories can be formalized as
probabilistic generators for hypothesis spaces of causal graphical models, using probabilistic
forms of generative grammars, predicate logic, or other structured representations (Griffiths,
2005; Griffiths & Tenenbaum, 2007b; Mansinghka, Kemp, Tenenbaum, & Griffiths, 2006;
Tenenbaum et al., 2006; Tenenbaum, Griffiths, & Niyogi, 2007; Tenenbaum & Niyogi,
2003). Given observations of causal events relating a set of objects, these probabilistic
theories generate the relevant variables for representing those events, a constrained space of
possible causal graphs over those variables, and the allowable parameterizations for those
graphs. They also generate a prior distribution over this hypothesis space of candidate
causal models, which provides the basis for Bayesian causal learning in the spirit of the
methods described above.

We see it as an advantage of the Bayesian approach that it forces modelers to make
clear their assumptions about the form and content of learners’ prior knowledge. The frame-
work lets us test these assumptions empirically and study how they vary across different
settings, by specifying a rational mapping from prior knowledge to learners’ behavior in any
given task. It may also seem unsatisfying, though, by passing on the hardest questions of
learning to whatever mechanism is responsible for establishing learners’ prior knowledge.
This is the problem we address in the next section, using the techniques of hierarchical
Bayesian models.

4 Hierarchical Bayesian models

The predictions of a Bayesian model can often depend critically on the prior distri-
bution that it uses. Our early coinflipping examples provided a simple and clear case of the
effects of priors. If a coin is tossed once and comes up heads, then a learner who began with
a uniform prior on the bias of the coin should predict that the next toss will produce heads
with probability 2

3 . If the learner began instead with the belief that the coin is likely to be
fair, she should predict that the next toss will produce heads with probability close to 1

2 .
Within statistics, Bayesian approaches have at times been criticized for necessarily

requiring some form of prior knowledge. It is often said that good statistical analyses
should “let the data speak for themselves”, hence the motivation for maximum-likelihood
estimation and other classical statistical methods that do not require a prior to be specified.
Cognitive models, however, will usually aim for the opposite goal. Most human inferences
are guided by background knowledge, and cognitive models should formalize this knowledge
and show how it can be used for induction. From this perspective, the prior distribution
used by a Bayesian model is critical, since an appropriate prior can capture the background
knowledge that humans bring to a given inductive problem. As mentioned in the previous
section, prior distributions can capture many kinds of knowledge: priors for causal reason-
ing, for example, may incorporate theories of folk physics, or knowledge about the powers
and liabilities of different ontological kinds.
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Figure 6. The beta distribution serves as a prior on the bias θ of a coin. The mean of the distribution
is α

α+β
, and the shape of the distribution depends on α + β.

Since background knowledge plays a central role in many human inferences, it is
important to ask how this knowledge might be acquired. In a Bayesian framework, the
acquisition of background knowledge can be modeled as the acquisition of a prior distribu-
tion. We have already seen one piece of evidence that prior distributions can be learned:
given two competing models, each of which uses a different prior distribution, Bayesian
model selection can be used choose between them. Here we provide a more comprehensive
treatment of the problem of learning prior distributions, and show how this problem can
be addressed using hierarchical Bayesian models (Good, 1980; Gelman, Carlin, Stern, &
Rubin, 1995). Although we will focus on just two applications, the hierarchical Bayesian
approach has been applied to several other cognitive problems (Lee, 2006; Tenenbaum et al.,
2006; Mansinghka et al., 2006), and many additional examples of hierarchical models can
be found in the statistical literature (Gelman et al., 1995; Goldstein, 2003).

Consider first the case where the prior distribution to be learned has known form but
unknown parameters. For example, suppose that the prior distribution on the bias of a
coin is Beta(α, β), where the parameters α and β are unknown. We previously considered
cases where the parameters α and β were positive integers, but in general these parameters
can be positive real numbers.4 As with integer-valued parameters, the mean of the beta
distribution is α

α+β
, and α + β determines the shape of the distribution. The distribution

4The general form of the beta distribution is

p(θ) =
Γ(α + β)

Γ(α)Γ(β)
θ

α−1(1 − θ)β−1 (26)

where Γ(α) =
R

∞

0
xα−1e−x dx is the generalized factorial function (also known as the gamma function), with

Γ(n) = (n−1)! for any integer argument n and smoothly interpolating between the factorials for real-valued
arguments (e.g., Boas, 1983).
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(c)(b)(a)

dnew dnew dnew

θnew enew enew

λ λ F

λ

α, β S S

Figure 7. Three hierarchical Bayesian models. (a) A model for inferring θnew, the bias of a coin.
dnew specifies the number of heads and tails observed when the coin is tossed. θnew is is drawn
from a beta distribution with parameters α and β. The prior distribution on these parameters has
a single hyperparameter, λ. (b) A model for inferring enew, the extension of a novel property. dnew

is a sparsely observed version of enew, and enew is assumed to be drawn from a prior distribution
induced by structured representation S. The hyperparameter λ specifies a prior distribution over
a hypothesis space of structured representations. (c) A model that can discover the form F of the
structure S. The hyperparameter λ now specifies a prior distribution over a hypothesis space of
structural forms.

is tightly peaked around its mean when α + β is large, flat when α = β = 1, and U-shaped
when α + β is small (Figure 6). Observing the coin being tossed provides some information
about the values of α and β, and a learner who begins with prior distributions on the values
of these parameters can update these distributions as each new coin toss is observed. The
prior distributions on α and β may be defined in terms of one or more hyperparameters. The
hierarchical model in Figure 7a uses three levels, where the hyperparameter at the top level
(λ) is fixed. In principle, however, we can develop hierarchical models with any number of
levels — we can can continue adding hyperparameters and priors on these hyperparameters
until we reach a level where we are willing to assume that the hyperparameters are fixed in
advance.

At first, the upper levels in hierarchical models like Figure 7a might seem too abstract
to be of much practical use. Yet these upper levels play a critical role — they allow
knowledge to be shared across contexts that are related but distinct. In our coin tossing
example, these contexts correspond to observations of many different coins, each of which
has a bias sampled from the same prior distribution Beta(α, β). It is possible to learn
something about α and β by tossing a single coin, but the best way to learn about α and β

is probably to experiment with many different coins. If most coins tend to come up heads
about half the time, we might infer that α and β are both large, and are close to each other
in size. Suppose, however, that we are working in a factory that produces trick coins for
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Figure 8. Inferences about the distribution of features within tribes. (a) Prior distributions on θ,
log(α + β) and α

α+β
. (b) Posterior distributions after observing 10 all-white tribes and 10 all-brown

tribes. (c) Posterior distributions after observing 20 tribes. Black circles indicate obese indiviuals,
and the rate of obesity varies among tribes.

magicians. If 80% of coins come up heads almost always, and the remainder come up tails
almost always, we might infer that α and β are both very small, and that α

α+β
≈ 0.8.

More formally, suppose that we have observed many coins being tossed, and that di is
the tally of heads and tails produced by the ith coin. The ith coin has bias θi, and each bias
θi is sampled from a beta distribution with parameters α and β. The hierarchical model
in Figure 8 captures these assumptions, and is known by statisticians as a beta-binomial
model (Gelman et al., 1995). To learn about the prior distribution Beta(α, β) we must
formalize our expectations about the values of α and β. We will assume that the mean of
the beta distribution α

α+β
is uniformly drawn from the interval [0, 1], and that the sum of

the parameters α + β is drawn from an exponential distribution with hyperparameter λ.
Given the hierarchical model in Figure 8, inferences about any of the θi can be made by
integrating out α and β:

p(θi|d1, d2, . . . , dn) =

∫

p(θi|α, β, di)p(α, β|d1, d2, . . . , dn)dαdβ (27)

and this integral can be approximated using the Markov chain Monte Carlo methods de-
scribed in the next section (see also Kemp, Perfors, & Tenenbaum, in press).
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4.1 Example: Learning about feature variability

Humans acquire many kinds of knowledge about categories and their features. Some
kinds of knowledge are relatively concrete: for instance, children learn that balls tend to
be round, and that televisions tend to be box-shaped. Other kinds of knowledge are more
abstract, and represent discoveries about categories in general. For instance, 30-month-old
children display a shape bias: they appear to know that the objects in any given category
tend to have the same shape, even if they differ along other dimensions, such as color and
texture (Heibeck & Markman, 1987; Smith, Jones, Landau, Gershkoff-Stowe, & Samuelson,
2002). The shape bias is one example of abstract knowledge about feature variability,
and Kemp et al. (in press) have argued that knowledge of this sort can be acquired by
hierarchical Bayesian models.

A task carried out by Nisbett, Krantz, Jepson, and Kunda (1983) shows how knowl-
edge about feature variability can support inductive inferences from very sparse data. These
researchers asked participants to imagine that they were exploring an island in the South-
eastern Pacific, that they had encountered a single member of the Barratos tribe, and that
this individual was brown and obese. Based on this single example, participants concluded
that most Barratos were brown, but gave a much lower estimate of the proportion of obese
Barratos. These inferences can be explained by the beliefs that skin color is a feature that
is consistent within tribes, and that obesity tends to vary within tribes, and the model in
Figure 8 can explain how these beliefs might be acquired.

Kemp et al. (in press) describe a model that can reason simultaneously about multiple
features, but for simplicity we will consider skin color and obesity separately. Consider first
the case where θi represents the proportion of brown-skinned individuals within tribe i, and
suppose that we have observed 20 members from each of 20 tribes. Half the tribes are brown
and the other half are white, but all of the individuals in a given tribe have the same skin
color. Given these observations, the posterior distribution on α + β indicates that α + β

is likely to be small (Figure 8b). Recall that small values of α + β imply that most of the
θi will be close to 0 or close to 1 (Figure 6): in other words, that skin color tends to be
homogeneous within tribes. Learning that α + β is small allows the model to make strong
predictions about a sparsely observed new tribe: having observed a single brown-skinned
member of a new tribe, the posterior distribution on θnew indicates that most members of
the tribe are likely to be brown (Figure 8b). Note that the posterior distribution on θnew is
almost as sharply peaked as the posterior distribution on θ11: the model has realized that
observing one member of a new tribe is almost as informative as observing 20 members of
that tribe.

Consider now the case where θi represents the proportion of obese individuals within
tribe i. Suppose that obesity is a feature that varies within tribes: a quarter of the 20
tribes observed have an obesity rate of 10%, and the remaining three quarters have rates
of 20%, 30%, and 40% respectively (Figure 8c). Given these observations, the posterior
distributions on α+β and α

α+β
(Figure 8c) indicate that obesity varies within tribes (α+β

is high), and that the base rate of obesity is around 25% ( α
α+β

is around 0.25). Again, we
can use these posterior distributions to make predictions about a new tribe, but now the
model requires many observations before it concludes that most members of the new tribe
are obese. Unlike the case in Figure 8b, the model has learned that a single observation
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of a new tribe is not very informative, and the distribution on θnew is now similar to the
average of the θ values for all previously observed tribes.

In Figures 8b and 8c, a hierarchical model is used to simultaneously learn about
high-level knowledge (α and β) and low-level knowledge (the values of θi). Any hierarchical
model, however, can be used for several different purposes. If α and β are fixed in advance,
the model supports top-down learning: knowledge about α and β can guide inferences
about the θi. If the θi are fixed in advance, the model supports bottom-up learning, and
the θi can guide inferences about α and β. The ability to support top-down and bottom-up
inferences is a strength of the hierarchical approach, but simultaneous learning at multiple
levels of abstraction is often required to account for human inferences. Note, for example,
that judgments about the Barratos depend critically on learning at two levels: learning at
the level of θ is needed to incorporate the observation that the new tribe has at least one
obese, brown-skinned member, and learning at the level of α and β is needed to discover
that skin-color is homogeneous within tribes but that obesity is not.

4.2 Example: Property induction

We have just seen that hierarchical Bayesian models can explain how the parameters
of a prior distribution might be learned. Prior knowledge in human cognition, however,
is often better characterized using more structured representations. Here we present a
simple case study that shows how a hierarchical Bayesian model can acquire structured
prior knowledge.

Structured prior knowledge plays a role in many inductive inferences, but we will
consider the problem of property induction. In a typical task of this sort, learners find out
that one or more members of a domain have a novel property, and decide how to extend the
property to the remaining members of the domain. For instance, given that gorillas carry
enzyme X132, how likely is it that chimps also carry this enzyme? (Rips, 1975; Osherson,
Smith, Wilkie, Lopez, & Shafir, 1990). For our purposes, inductive problems like these
are interesting because they rely on relatively rich prior knowledge, and because this prior
knowledge often appears to be learned. For example, humans learn at some stage that
gorillas are more closely related to chimps than to squirrels, and taxonomic knowledge of
this sort guides inferences about novel anatomical and physiological properties.

The problem of property induction can be formalized as an inference about the ex-
tension of a novel property (Kemp & Tenenbaum, 2003). Suppose that we are working
with a finite set of animal species. Let enew be a binary vector which represents the true
extension of the novel property (Figures 7 and 9). For example, the element in enew that
corresponds to gorillas will be 1 (represented as a black circle in Figure 9) if gorillas have
the novel property, and 0 otherwise. Let dnew be a partially observed version of extension
enew (Figure 9). We are interested in the posterior distribution on enew given the sparse
observations in dnew. Using Bayes’ rule, this distribution can be written as

P (enew|dnew,S) =
P (dnew|enew)P (enew|S)

P (dnew|S)
(28)

where S captures the structured prior knowledge which is relevant to the novel property. The
first term in the numerator, P (dnew|enew), depends on the process by which the observations
in dnew were sampled from the true extension enew. We will assume for simplicity that the
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entries in dnew are sampled at random from the vector enew. The denominator can be
computed by summing over all possible values of enew:

P (dnew|S) =
∑

enew

P (dnew|enew)P (enew|S). (29)

For reasoning about anatomy, physiology, and other sorts of generic biological properties
(e.g., “has enzyme X132”), the prior P (enew|S) will typically capture knowledge about
taxonomic relationships between biological species. For instance, it seems plausible a priori
that gorillas and chimps are the only familiar animals that carry a certain enzyme, but less
probable that this enzyme will only be found in gorillas and squirrels.

Prior knowledge about taxonomic relationships between living kinds can be captured
using a tree-structured representation like the taxonomy shown in Figure 9. We will there-
fore assume that the structured prior knowledge S takes the form of a tree, and define a
prior distribution P (enew|S) using a stochastic process over this tree. The stochastic process
assigns some prior probability to all possible extensions, but the most likely extensions are
those that are smooth with respect to tree S. An extension is smooth if nearby species in
the tree tend to have the same status — either both have the novel property, or neither
does. One example of a stochastic process that tends to generate properties smoothly over
the tree is a mutation process, inspired by biological evolution: the property is randomly
chosen to be on or off at the root of the tree, and then has some small probability of switch-
ing state at each point of each branch of the tree (Huelsenbeck & Ronquist, 2001; Kemp,
Perfors, & Tenenbaum, 2004).

For inferences about generic biological properties, the problem of acquiring prior
knowledge has now been reduced to the problem of finding an appropriate tree S. Hu-
man learners acquire taxonomic representations in part by observing properties of entities:
noticing, for example, that gorillas and chimps have many properties in common and should
probably appear nearby in a taxonomic structure. This learning process can be formalized
using the hierarchical Bayesian model in Figure 9. We assume that a learner has partially
observed the extensions of n properties, and that these observations are collected in vectors
labeled d1 through dn. The true extensions ei of these properties are generated from the
same tree-based prior that is assumed to generate enew, the extension of the novel prop-
erty. Learning the taxonomy now amounts to making inferences about the tree S that is
most likely to have generated all of these partially observed properties. Again we see that
a hierarchical formulation allows information to be shared across related contexts. Here,
information about n partially observed properties is used to influence the prior distribution
for inferences about enew. To complete the hierarchical model in Figure 9 it is necessary to
specify a prior distribution on trees S: for simplicity, we can use a uniform distribution over
tree topologies, and an exponential distribution with parameter λ over the branch lengths.

Inferences about enew can now be made by integrating out the underlying tree S:

P (enew|d1, . . . , dn, dnew) =

∫

P (enew|dnew,S)p(S|d1, . . . , dn, dnew)dS (30)

where P (enew|dnew,S) is defined in Equation 28. This integral can be approximated by
using Markov chain Monte Carlo methods of the kind discussed in the next section to draw
a sample of trees from the distribution p(S|d1, . . . , dn, dnew) (Huelsenbeck & Ronquist, 2001).
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Figure 9. Learning a tree-structured prior for property induction. Given a collection of sparsely
observed properties di (a black circle indicates that a species has a given property), we can compute
a posterior distribution on structure S and posterior distributions on each extension ei. Since the
distribution over S is difficult to display, we show a single tree with high posterior probability. Since
each distribution on ei is difficult to display, we show instead the posterior probability that each
species has each property (dark circles indicate probabilities close to 1).
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If preferred, a single tree with high posterior probability can be identified, and this tree can
be used to make predictions about the extension of the novel property. Kemp et al. (2004)
follow this second strategy, and show that a single tree is sufficient to accurately predict
human inferences about the extensions of novel biological properties.

The model in Figures 7b and 9 assumes that the extensions ei are generated over
some true but unknown tree S. Tree structures may be useful for capturing taxonomic
relationships between biological species, but different kinds of structured representations
such as chains, rings, or sets of clusters are useful in other settings. Understanding which
kind of representation is best for a given context is sometimes thought to rely on innate
knowledge: Atran (1998), for example, argues that the tendency to organize living kinds
into tree structures reflects an “innately determined cognitive module.” The hierarchical
Bayesian approach challenges the inevitability of this conclusion by showing how a model
might discover which kind of representation is best for a given data set. We can create such
a model by adding an additional level to the model in Figure 7b. Suppose that variable F
indicates whether S is a tree, a chain, a ring, or an instance of some other structural form.
Given a prior distribution over a hypothesis space of possible forms, the model in Figure 7c
can simultaneously discover the form F and the instance of that form S that best account
for a set of observed properties. Kemp et al. (2004) formally define a model of this sort,
and show that it chooses appropriate representations for several domains. For example, the
model chooses a tree-structured representation given information about animals and their
properties, but chooses a linear representation (the liberal-conservative spectrum) when
supplied with information about the voting patterns of Supreme Court judges.

The models in Figure 7b and 7c demonstrate that the hierarchical Bayesian approach
can account for the acquisition of structured prior knowledge. Many domains of human
knowledge, however, are organized into representations that are richer and more sophisti-
cated than the examples we have considered. The hierarchical Bayesian approach provides
a framework that can help to explore the use and acquisition of richer prior knowledge, such
as the intuitive causal theories we described at the end of Section 3. For instance, Mans-
inghka, Kemp, Tenenbaum, and Griffiths (2006) describe a two-level hierarchical model in
which the lower level represents a space of causal graphical models, while the higher level
specifies a simple abstract theory: it assumes that the variables in the graph come in one
or more classes, with the prior probability of causal relations between them depending on
these classes. The model can then be used to infer the number of classes, which variables
are in which classes, and the probability of causal links existing between classes directly
from data, at the same time as it learns the specific causal relations that hold between
individual pairs of variables. Given data from a causal network that embodies some such
regularity, the model of Mansinghka et al. (2006) infers the correct network structure from
many fewer examples than would be required under a generic uniform prior, because it
can exploit the constraint of a learned theory of the network’s abstract structure. While
the theories that can be learned using our best hierarchical Bayesian models are still quite
simple, these frameworks provide a promising foundation for future work and an illustra-
tion of how structured knowledge representations and sophisticated statistical inference can
interact productively in cognitive modeling.
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5 Markov chain Monte Carlo

The probability distributions one has to evaluate in applying Bayesian inference can
quickly become very complicated, particularly when using hierarchical Bayesian models.
Graphical models provide some tools for speeding up probabilistic inference, but these tools
tend to work best when most variables are directly dependent on a relatively small number
of other variables. Other methods are needed to work with large probability distributions
that exhibit complex interdependencies among variables. In general, ideal Bayesian compu-
tations can only be approximated for these complex models, and many methods for approx-
imate Bayesian inference and learning have been developed (Bishop, 2006; Mackay, 2003).
In this section we introduce the Markov chain Monte Carlo approach, a general-purpose
toolkit for inferring the values of latent variables, estimating parameters and learning model
structure, which can work with a very wide range of probabilistic models. The main draw-
back of this approach is that it can be slow, but given sufficient time it can yield accurate
inferences for models that cannot be handled by other means.

The basic idea behind Monte Carlo methods is to represent a probability distribution
by a set of samples from that distribution. Those samples provide an idea of which val-
ues have high probability (since high probability values are more likely to be produced as
samples), and can be used in place of the distribution itself when performing various com-
putations. When working with Bayesian models of cognition, we are typically interested
in understanding the posterior distribution over a parameterized model – such as a causal
network with its causal strength parameters – or over a class of models – such as the space
of all causal network structures on a set of variables, or all taxonomic tree structures on a
set of objects. Samples from the posterior distribution can be useful in discovering the best
parameter values for a model or the best models in a model class, and for estimating how
concentrated the posterior is on those best hypotheses (i.e., how confident a learner should
be in those hypotheses).

Sampling can also be used to approximate averages over the posterior distribution.
For example, in computing the posterior probability of a parameterized model given data,
it is necessary to compute the model’s marginal likelihood, or the average probability of the
data over all parameter settings of the model (as in Equation 16 for determining whether
we have a fair or weighted coin). Averaging over all parameter settings is also necessary for
ideal Bayesian prediction about future data points (as in computing the posterior predictive
distribution for a weighted coin, Equation 11). Finally, we could be interested in averaging
over a space of model structures, making predictions about model features that are likely to
hold regardless of which structure is correct. For example, we could estimate how likely it
is that one variable A causes variable B in a complex causal network of unknown structure,
by computing the probability that a link A → B exists in a high-probability sample from
the posterior over network structures (Friedman & Koller, 2000).

Monte Carlo methods were originally developed primarily for approximating these
sophisticated averages – that is, approximating a sum over all of the values taken on by a
random variable with a sum over a random sample of those values. Assume that we want
to evaluate the average (also called the expected value) of a function f(x) over a probability
distribution p(x) defined on a set of k random variables taking on values x = (x1, x2, . . . , xk).
This can be done by taking the integral of f(x) over all value of x, weighted by their
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probability p(x). Monte Carlo provides an alternative, relying upon the law of large numbers
to justify the approximation

∫

f(x)p(x) dx ≈
m

∑

i=1

f(x(i)) (31)

where the x
(i) are a set of m samples from the distribution p(x). The accuracy of this

approximation increases as m increases.
To show how the Monte Carlo approach to approximate numerical integration is

useful for evaluating Bayesian models, recall our model of causal structure-learning known
as causal support. In order to compute the evidence that a set of contingencies d provides
in favor of a causal relationship, we needed to evaluate the integral

P (d|Graph 1) =

∫ 1

0

∫ 1

0
P1(d|w0, w1,Graph 1) P (w0, w1|Graph 1) dw0 dw1 (32)

where P1(d|w0, w1,Graph 1) is derived from the noisy-OR parameterization, and
P (w0, w1|Graph 1) is assumed to be uniform over all values of w0 and w1 between 0 and 1.
If we view P1(d|w0, w1,Graph 1) simply as a function of w0 and w1, it is clear that we can
approximate this integral using Monte Carlo. The analogue of Equation 31 is

P (d|Graph 1) ≈
m

∑

i=1

P1(d|w
(i)
0 , w

(i)
1 ,Graph 1) (33)

where the w
(i)
0 and w

(i)
1 are a set of m samples from the distribution P (w0, w1|Graph 1).

A version of this simple approximation was used to compute the values of causal support
shown in Figure 4 (for details, see Griffiths & Tenenbaum, 2005).

One limitation of classical Monte Carlo methods is that it is not easy to automati-
cally generate samples from most probability distributions. There are a number of ways to
address this problem, including methods such as rejection sampling and importance sam-
pling (see, e.g., Neal, 1993). One of the most flexible methods for generating samples from
a probability distribution is Markov chain Monte Carlo (MCMC), which can be used to
construct samplers for arbitrary probability distributions even if the normalizing constants
of those distributions are unknown. MCMC algorithms were originally developed to solve
problems in statistical physics (Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953),
and are now widely used across physics, statistics, machine learning, and related fields (e.g.,
Newman & Barkema, 1999; Gilks, Richardson, & Spiegelhalter, 1996; Mackay, 2003; Neal,
1993).

As the name suggests, Markov chain Monte Carlo is based upon the theory of Markov
chains – sequences of random variables in which each variable is conditionally independent
of all previous variables given its immediate predecessor (as in Figure 2b). The probability
that a variable in a Markov chain takes on a particular value conditioned on the value
of the preceding variable is determined by the transition kernel for that Markov chain.
One well known property of Markov chains is their tendency to converge to a stationary
distribution: as the length of a Markov chain increases, the probability that a variable in
that chain takes on a particular value converges to a fixed quantity determined by the choice
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of transition kernel. If we sample from the Markov chain by picking some initial value and
then repeatedly sampling from the distribution specified by the transition kernel, we will
ultimately generate samples from the stationary distribution.

In MCMC, a Markov chain is constructed such that its stationary distribution is the
distribution from which we want to generate samples. If the target distribution is p(x),
then the Markov chain would be defined on sequences of values of x. The transition kernel
K(x(i+1)|x(i)) gives the probability of moving from state x

(i) to state x
(i+1). In order for

the stationary distribution of the Markov chain to be the target distribution p(x), the
transition kernel must be chosen so that p(x) is invariant to the kernel. Mathematically
this is expressed by the condition

p(x(i+1)) =
∑

x

p(x)K(x|x′). (34)

If this is the case, once the probability that the chain is in a particular state is equal to
p(x), it will continue to be equal to p(x) – hence the term “stationary distribution”. Once
the chain converges to its stationary distribution, averaging a function f(x) over the values
of x

(i) will approximate the average of that function over the probability distribution p(x).

Fortunately, there is a simple procedure that can be used to construct a transition
kernel that will satisfy Equation 34 for any choice of p(x), known as the Metropolis-Hastings
algorithm (Hastings, 1970; Metropolis et al., 1953). The basic idea is to define K(x(i+1)|x(i))
as the result of two probabilistic steps. The first step uses an arbitrary proposal distribution,
q(x∗|x(i)), to generate a proposed value x

∗ for x
(i+1). The second step is to decide whether

to accept this proposal. This is done by computing the acceptance probability, A(x∗|x(i)),
defined to be

A(x∗|x(i)) = min

[

p(x∗)q(x(i)|x∗)

p(x(i))q(x∗|x(i))
, 1

]

. (35)

If a random number generated from a uniform distribution over [0, 1] is less than A(x∗|x(i)),
the proposed value x

∗ is accepted as the value of x
(i+1). Otherwise, the Markov chain

remains at its previous value, and x
(i+1) = x

(i). An illustration of the use of the Metropolis-
Hastings algorithm to generate samples from a Gaussian distribution (which is easy to
sample from in general, but convenient to work with in this case) appears in Figure 10.

One advantage of the Metropolis-Hastings algorithm is that it requires only limited
knowledge of the probability distribution p(x). Inspection of Equation 35 reveals that, in
fact, the Metropolis-Hastings algorithm can be applied even if we only know some quantity
proportional to p(x), since only the ratio of these quantities affects the algorithm. If we
can sample from distributions related to p(x), we can use other Markov chain Monte Carlo
methods. In particular, if we are able to sample from the conditional probability distribution
for each variable in a set given the remaining variables, p(xj |x1, . . . , xj−1, xj+1, . . . , xn), we
can use another popular algorithm, Gibbs sampling (Geman & Geman, 1984; Gilks et al.,
1996), which is known in statistical physics as the heatbath algorithm (Newman & Barkema,
1999). The Gibbs sampler for a target distribution p(x) is the Markov chain defined by
drawing each xj from the conditional distribution p(xj |x1, . . . , xj−1, xj+1, . . . , xk).

Markov chain Monte Carlo can be a good way to obtaining samples from probability
distributions that would otherwise be difficult to compute with, including the posterior
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Figure 10. The Metropolis-Hastings algorithm. The solid lines shown in the bottom part of
the figure are three sequences of values sampled from a Markov chain. Each chain began at a
different location in the space, but used the same transition kernel. The transition kernel was
constructed using the procedure described in the text for the Metropolis-Hastings algorithm: the
proposal distribution, q(x∗|x), was a Gaussian distribution with mean x and standard deviation
0.2 (shown centered on the starting value for each chain at the bottom of the figure), and the
acceptance probabilities were computed by taking p(x) to be Gaussian with mean 0 and standard
deviation 1 (plotted with a solid line in the top part of the figure). This guarantees that the
stationary distribution associated with the transition kernel is p(x). Thus, regardless of the initial
value of each chain, the probability that the chain takes on a particular value will converge to p(x) as
the number of iterations increases. In this case, all three chains move to explore a similar part of the
space after around 100 iterations. The histogram in the top part of the figure shows the proportion
of time the three chains spend visiting each part in the space after 250 iterations (marked with the
dotted line), which closely approximates p(x). Samples from the Markov chains can thus be used
similarly to samples from p(x).
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Figure 11. Approaches to semantic representation. (a) In a semantic network, words are represented
as nodes, and edges indicate semantic relationships. (b) In a semantic space, words are represented
as points, and proximity indicates semantic association. These are the first two dimensions of a
solution produced by Latent Semantic Analysis (Landauer & Dumais, 1997). The black dot is the
origin. (c) In the topic model, words are represented as belonging to a set of probabilistic topics.
The matrix shown on the left indicates the probability of each word under each of three topics. The
three columns on the right show the words that appear in those topics, ordered from highest to
lowest probability.

distributions associated with complex probabilistic models. To illustrate how MCMC can
be applied in the context of a Bayesian model of cognition, we will show how Gibbs sampling
can be used to extract a statistical representation of the meanings of words from a collection
of text documents.

5.1 Example: Inferring topics from text

Several computational models have been proposed to account for the large-scale struc-
ture of semantic memory, including semantic networks (e.g., Collins & Loftus, 1975; Collins
& Quillian, 1969) and semantic spaces (e.g., Landauer & Dumais, 1997; Lund & Burgess,
1996). These approaches embody different assumptions about the way that words are rep-
resented. In semantic networks, words are nodes in a graph where edges indicate semantic
relationships, as shown in Figure 11 (a). In semantic space models, words are represented as
points in high-dimensional space, where the distance between two words reflects the extent
to which they are semantically related, as shown in Figure 11 (b).

Probabilistic models provide an opportunity to explore alternative representations for
the meaning of words. One such representation is exploited in topic models, in which words
are represented in terms of the set of topics to which they belong (Blei, Ng, & Jordan,
2003; Hofmann, 1999; Griffiths & Steyvers, 2004). Each topic is a probability distribution
over words, and the content of the topic is reflected in the words to which it assigns high
probability. For example, high probabilities for woods and stream would suggest a topic
refers to the countryside, while high probabilities for federal and reserve would suggest
a topic refers to finance. Each word will have a probability under each of these different
topics, as shown in Figure 11 (c). For example, meadow has a relatively high probability
under the countryside topic, but a low probability under the finance topic, similar to woods

and stream.

Representing word meanings using probabilistic topics makes it possible to use
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Bayesian inference to answer some of the critical problems that arise in processing lan-
guage. In particular, we can make inferences about which semantically related concepts are
likely to arise in the context of an observed set of words or sentences, in order to facilitate
subsequent processing. Let z denote the dominant topic in a particular context, and w1 and
w2 be two words that arise in that context. The semantic content of these words is encoded
through a set of probability distributions that identify their probability under different top-
ics: if there are T topics, then these are the distributions P (w|z) for z = {1, . . . , T}. Given
w1, we can infer which topic z was likely to have produced it by using Bayes’ rule,

P (z|w1) =
P (w1|z)P (z)

∑T
z′=1 P (w1|z′)P (z′)

(36)

where P (z) is a prior distribution over topics. Having computed this distribution over
topics, we can make a prediction about future words by summing over the possible topics,

P (w2|w1) =

T
∑

z=1

P (w2|z)P (z|w1). (37)

A topic-based representation can also be used to disambiguate words: if bank occurs in
the context of stream, it is more likely that it was generated from the bucolic topic than
the topic associated with finance.

Probabilistic topic models are an interesting alternative to traditional approaches to
semantic representation, and in many cases actually provide better predictions of human
behavior (Griffiths & Steyvers, 2003; Griffiths, Steyvers, & Tenenbaum, in press). However,
one critical question in using this kind of representation is that of which topics should be
used. Fortunately, work in machine learning and information retrieval has provided an
answer to this question. As with popular semantic space models (Landauer & Dumais,
1997; Lund & Burgess, 1996), the representation of a set of words in terms of topics can be
inferred automatically from the text contained in large document collections. The key to
this process is viewing topic models as generative models for documents, making it possible
to use standard methods of Bayesian statistics to identify a set of topics that likely to have
generated an observed collection of documents. Figure 12 shows a sample of topics inferred
from the TASA corpus (Landauer & Dumais, 1997), a collection of passages excerpted from
educational texts used in curricula from the first year of school to the first year of college.

We can specify a generative model for documents by assuming that each document is
a mixture of topics, with each word in that document being drawn from a particular topic,
and the topics varying in probability across documents. For any particular document, we
write the probability of a word w in that document as

P (w) =

T
∑

z=1

P (w|z)P (z), (38)

where P (w|z) is the probability of word w under topic z, which remains constant across
all documents, and P (z) is the probability of topic j in this document. We can summarize

these probabilities with two sets of parameters, taking φ
(z)
w to indicate P (w|z), and θ

(d)
z

to indicate P (z) in a particular document d. The procedure for generating a collection of
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Figure 12. A sample of topics from a 1700 topic solution derived from the TASA corpus. Each
column contains the 20 highest probability words in a single topic, as indicated by P (w|z). Words
in boldface occur in different senses in neighboring topics, illustrating how the model deals with
polysemy and homonymy. These topics were discovered in a completely unsupervised fashion, using
just word-document co-occurrence frequencies.

documents is then straightforward. First, we generate a set of topics, sampling φ(z) from
some prior distribution p(φ). Then for each document d, we generate the weights of those
topics, sampling θ(d) from a distribution p(θ). Assuming that we know in advance how
many words will appear in the document, we then generate those words in turn. A topic
z is chosen for each word that will be in the document by sampling from the distribution
over topics implied by θ(d). Finally, the identity of the word w is determined by sampling
from the distribution over words φ(z) associated with that topic.

To complete the specification of our generative model, we need to specify distributions
for φ and θ so that we can make inferences about these parameters from a corpus of doc-
uments. As in the case of coinflipping, calculations can be simplified by using a conjugate
prior. Both φ and θ are arbitrary distributions over a finite set of outcomes, or multino-
mial distributions, and the conjugate prior for the multinomial distribution is the Dirichlet
distribution. Just as the multinomial distribution is a multivariate generalization of the
Bernoulli distribution we used in the coinflipping example, the Dirichlet distribution is a
multivariate generalization of the beta distribution. We assume that the number of “virtual
examples” of instances of each topic appearing in each document is set by a parameter α,
and likewise use a parameter β to represent the number of instances of each word in each
topic. Figure 13 shows a graphical model depicting the dependencies among these variables.
This model, known as Latent Dirichlet Allocation, was introduced in machine learning by
Blei, Ng, and Jordan (2003).

We extract a set of topics from a collection of documents in a completely unsupervised
fashion, using Bayesian inference. Since the Dirichlet priors are conjugate to the multinomial
distributions φ and θ, we can compute the joint distribution P (w, z) by integrating out φ

and θ, just as we did in the model selection example above (Equation 16). We can then ask
questions about the posterior distribution over z given w, given by Bayes rule:

P (z|w) =
P (w, z)

∑

z
P (w, z)

. (39)

Since the sum in the denominator is intractable, having T n terms, and we are forced to
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Figure 13. Graphical model for Latent Dirichlet Allocation (Blei, Ng, & Jordan, 2003). The
distribution over words given topics, φ, and the distribution over topics in a document, θ, are
generated from Dirichlet distributions with parameters β and α respectively. Each word in the
document is generated by first choosing a topic zi from θ, and then choosing a word according to
φ(zi).

evaluate this posterior using Markov chain Monte Carlo. In this case, we use Gibbs sampling
to investigate the posterior distribution over assignments of words to topics, z.

The Gibbs sampling algorithm consists of choosing an initial assignment of words
to topics (for example, choosing a topic uniformly at random for each word), and then
sampling the assignment of each word zi from the conditional distribution P (zi|z−i,w).
Each iteration of the algorithm is thus a probabilistic shuffling of the assignments of words
to topics. This procedure is illustrated in Figure 14. The figure shows the results of applying
the algorithm (using just three topics) to a small portion of the TASA corpus. This portion
features 30 documents that use the word money, 30 documents that use the word oil,
and 30 documents that use the word river. The vocabulary is restricted to 18 words, and
the entries indicate the frequency with which the 731 tokens of those words appeared in
the 90 documents. Each word token in the corpus, wi, has a topic assignment, zi, at each
iteration of the sampling procedure. In the figure, we focus on the tokens of three words:
money, bank, and stream. Each word token is initially assigned a topic at random, and
each iteration of MCMC results in a new set of assignments of tokens to topics. After a few
iterations, the topic assignments begin to reflect the different usage patterns of money and
stream, with tokens of these words ending up in different topics, and the multiple senses
of bank.

The details behind this particular Gibbs sampling algorithm are given in Griffiths
and Steyvers (2004), where the algorithm is used to analyze the topics that appear in a
large database of scientific documents. The conditional distribution for zi that is used in
the algorithm can be derived using an argument similar to our derivation of the posterior
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Figure 14. Illustration of the Gibbs sampling algorithm for learning topics. Each word token wi

appearing in the corpus has a topic assignment, zi. The figure shows the assignments of all tokens
of three types – money, bank, and stream – before and after running the algorithm. Each marker
corresponds to a single token appearing in a particular document, and shape and color indicates
assignment: topic 1 is a black circle, topic 2 is a gray square, and topic 3 is a white triangle. Before
running the algorithm, assignments are relatively random, as shown in the left panel. After running
the algorithm, tokens of money are almost exclusively assigned to topic 3, tokens of stream are
almost exclusively assigned to topic 1, and tokens of bank are assigned to whichever of topic 1
and topic 3 seems to dominate a given document. The algorithm consists of iteratively choosing an
assignment for each token, using a probability distribution over tokens that guarantees convergence
to the posterior distribution over assignments.
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predictive distribution in coinflipping, giving

P (zi|z−i,w) ∝
n

(wi)
−i,zi

+ β

n
(·)
−i,zi

+ Wβ

n
(di)
−i,zi

+ α

n
(di)
−i,· + Tα

, (40)

where z−i is the assignment of all zk such that k 6= i, and n
(wi)
−i,zi

is the number of words

assigned to topic zi that are the same as wi, n
(·)
−i,zi

is the total number of words assigned to

topic zi, n
(di)
−i,zi

is the number of words from document di assigned to topic zi, and n
(di)
−i,· is

the total number of words in document di, all not counting the assignment of the current
word wi. The two terms in this expression have intuitive interpretations, being the posterior
predictive distributions on words within a topic and topics within a document given the
current assignments z−i respectively. The result of the MCMC algorithm is a set of samples
from P (z|w), reflecting the posterior distribution over topic assignments given a collection
of documents. A single sample can be used to evaluate the topics that appear in a corpus,
as shown in Figure 12, or the assignments of words to topics, as shown in Figure 14. We
can also compute quantities such as the strength of association between words (given by
Equation 37) by averaging over many samples.5

While other inference algorithms exist that can be used with this generative model
(e.g., Blei et al., 2003; Minka & Lafferty, 2002), the Gibbs sampler is an extremely simple
(and reasonably efficient) way to investigate the consequences of using topics to represent
semantic relationships between words. Griffiths and Steyvers (2002, 2003) suggested that
topic models might provide an alternative to traditional approaches to semantic representa-
tion, and showed that they can provide better predictions of human word association data
than Latent Semantic Analysis (LSA) (Landauer & Dumais, 1997). Topic models can also
be applied to a range of other tasks that draw on semantic association, such as semantic
priming and sentence comprehension (Griffiths et al., in press).

The key advantage that topic models have over semantic space models is postulating
a more structured representation – different topics can capture different senses of words,
allowing the model to deal with polysemy and homonymy in a way that is automatic
and transparent. For instance, similarity in semantic space models must obey a version
of the triangle inequality for distances: if there is high similarity between words w1 and
w2, and between words w2 and w3, then w1 and w3 must be at least fairly similar. But
word associations often violate this rule. For instance, asteroid is highly associated with
belt, and belt is highly associated with buckle, but asteroid and buckle have little
association. LSA thus has trouble representing these associations. Out of approximately
4500 words in a large-scale set of word association norms (Nelson, McEvoy, & Schreiber,
1998), LSA judges that belt is the 13th most similar word to asteroid, that buckle is

5When computing quantities such as P (w2|w1), as given by Equation 37, we need a way of finding the
parameters φ that characterize the distribution over words associated with each topic. This can be done
using ideas similar to those applied in our coinflipping example: for each samples of z we can estimate φ as

φ̂
(w)
z =

n
(w)
z + β

n
(·)
z + Wβ

(41)

which is the posterior predictive distribution over new words w for topic z conditioned on w and z.
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the second most similar word to belt, and consequently buckle is the 41st most similar
word to asteroid – more similar than tail, impact, or shower. In contrast, using topics
makes it possible to represent these associations faithfully, because belt belongs to multiple
topics, one highly associated with asteroid but not buckle, and another highly associated
with buckle but not asteroid.

The relative success of topic models in modeling semantic similarity is thus an in-
stance of the capacity for probabilistic models to combine structured representations with
statistical learning – a theme that has run through all of the examples we have considered
in this chapter. The same capacity makes it easy to extend these models to capture other
aspects of language. As generative models, topic models can be modified to incorporate
richer semantic representations such as hierarchies (Blei et al., 2004), as well as rudimen-
tary syntax (Griffiths, Steyvers, Blei, & Tenenbaum, 2005), and extensions of the Markov
chain Monte Carlo algorithm described in this section make it possible to sample from the
posterior distributions induced by these models.

6. Conclusion

Our aim in this chapter has been to survey the conceptual and mathematical foun-
dations of Bayesian models of cognition, and to introduce several advanced techniques that
are driving state-of-the-art research. We have had space to discuss only a few specific and
rather simple cognitive models based on these ideas, but much more can be found in the
current literature referenced in the introduction. These Bayesian models of cognition rep-
resent just one side of a larger movement that seeks to understand intelligence in terms of
rational probabilistic inference. Related ideas are providing new paradigms for the study of
neural coding and computation (Doya, Ishii, Pouget, & Rao, 2007), children’s cognitive de-
velopment (Gopnik & Tenenbaum, in press), machine learning (Bishop, 2006) and artificial
intelligence (Russell & Norvig, 2002).

We hope that this chapter conveys some sense of what all this excitement is about
– or at least why we find this line of work exciting. Bayesian models give us ways to
approach deep questions of human cognition that have not been previously amenable to
rigorous formal study. How can human minds make predictions and generalizations from
such limited data, and so often be correct? How can structured representations of abstract
knowledge constrain and guide sophisticated statistical inferences from sparse data? What
specific forms of knowledge support human inductive inference, across different domains
and tasks? How can these structured knowledge representations themselves be acquired
from experience? And how can the necessary computations be carried out or approximated
tractably for complex models that might approach the scale of interesting chunks of human
cognition? We are still far from having good answers to these questions, but as this chapter
shows, we are beginning to see what answers might look like and to have the tools needed
to start building them.

Acknowledgements

This chapter is based in part on tutorials given by the authors at the Annual Meeting
of the Cognitive Science Society in 2004 and 2006, and on portions of a tutorial on proba-
bilistic inference written by Thomas L. Griffiths and Alan Yuille that appeared as an online



BAYESIAN MODELS 44

supplement to the special issue of Trends in Cognitive Sciences on Probabilistic Models of
Cognition (Volume 10, Issue 7). We thank the participants in those tutorials and the special
issue for their feedback on this material. The writing of this chapter was supported in part
by grants from the James S. McDonnell Foundation Causal Learning Research Collabora-
tive, the DARPA BICA program, the National Science Foundation (TLG), the Air Force
Office of Scientific Research (JBT, TLG), the William Asbjornsen Albert fellowship (CK),
and the Paul E. Newton Career Development Chair (JBT).

References

Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning algorithm for Boltzmann
machines. Cognitive Science, 9, 147-169.

Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, NJ: Erlbaum.

Ashby, F. G., & Alfonso-Reese, L. A. (1995). Categorization as probability density estimation.
Journal of Mathematical Psychology, 39, 216-233.

Atran, S. (1998). Folk biology and the anthropology of science: Cognitive universals and cultural
particulars. Behavioral and Brain Sciences, 21, 547-609.

Baker, C. L., Tenenbaum, J. B., & Saxe, R. R. (2007). Goal inference as inverse planning. In
Proceedings of the 29th annual meeting of the cognitive science society.

Bayes, T. (1763/1958). Studies in the history of probability and statistics: IX. Thomas Bayes’s
Essay towards solving a problem in the doctrine of chances. Biometrika, 45, 296-315.

Bernardo, J. M., & Smith, A. F. M. (1994). Bayesian theory. New York: Wiley.

Bishop, C. M. (2006). Pattern recognition and machine learning. New York: Springer.

Blei, D., Griffiths, T., Jordan, M., & Tenenbaum, J. (2004). Hierarchical topic models and the
nested Chinese restaurant process. In Advances in Neural Information Processing Systems 16.
Cambridge, MA: MIT Press.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of Machine
Learning Research, 3, 993-1022.

Boas, M. L. (1983). Mathematical methods in the physical sciences (2nd ed.). New York: Wiley.

Brainard, D. H., & Freeman, W. T. (1997). Bayesian color constancy. Journal of the Optical Society
of America A, 14, 1393-1411.

Buehner, M., & Cheng, P. W. (1997). Causal induction: The Power PC theory versus the Rescorla-
Wagner theory. In M. Shafto & P. Langley (Eds.), Proceedings of the 19th Annual Conference
of the Cognitive Science Society (p. 55-61). Hillsdale, NJ: Lawrence Erlbaum Associates.

Buehner, M. J., Cheng, P. W., & Clifford, D. (2003). From covariation to causation: A test of
the assumption of causal power. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 29, 1119-1140.

Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: MIT Press.

Charniak, E. (1993). Statistical language learning. Cambridge, MA: MIT Press.

Chater, N., & Manning, C. D. (2006). Probabilistic models of language processing and acquisition.
Trends in Cognitive Sciences, 10, 335-344.

Cheng, P. (1997). From covariation to causation: A causal power theory. Psychological Review, 104,
367-405.



BAYESIAN MODELS 45

Chomsky, N. (1988). Language and problems of knowledge: The managua lectures. MIT Press.

Collins, A. M., & Loftus, E. F. (1975). A spreading activation theory of semantic processing.
Psychological Review, 82, 407-428.

Collins, A. M., & Quillian, M. R. (1969). Retrieval time from semantic memory. Journal of Verbal
Learning and Verbal Behaviour, 8, 240-247.

Courville, A. C., Daw, N. D., & Touretzky, D. S. (2006). Bayesian theories of conditioning in a
changing world. Trends in Cognitive Sciences, 10, 294-300.

Danks, D., Griffiths, T. L., & Tenenbaum, J. B. (2003). Dynamical causal learning. In S. Becker,
S. Thrun, & K. Obermayer (Eds.), Advances Neural Information Processing Systems 15 (p.
67-74). Cambridge, MA: MIT Press.

Doya, K., Ishii, S., Pouget, A., & Rao, R. P. N. (Eds.). (2007). The Bayesian brain: Probabilistic
approaches to neural coding. Cambridge, MA: MIT Press.

Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern classification. New York: Wiley.

Friedman, N., & Koller, D. (2000). Being Bayesian about network structure. In Proceedings of the
16th annual conference on uncertainty in ai (p. 201-210). Stanford, CA.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995). Bayesian data analysis. New York:
Chapman & Hall.

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6,
721-741.

Ghahramani, Z. (2004). Unsupervised learning. In O. Bousquet, G. Raetsch, & U. von Luxburg
(Eds.), Advanced lectures on machine learning. Berlin: Springer-Verlag.

Gigerenzer, G., Swijtink, Z., Porter, T., Daston, L., Beatty, J., & Kruger, L. (1989). The empire of
chance. Cambridge: Cambridge University Press.

Gilks, W., Richardson, S., & Spiegelhalter, D. J. (Eds.). (1996). Markov chain Monte Carlo in
practice. Suffolk, UK: Chapman and Hall.

Glymour, C. (2001). The mind’s arrows: Bayes nets and graphical causal models in psychology.
Cambridge, MA: MIT Press.

Glymour, C., & Cooper, G. (1999). Computation, causation, and discovery. Cambridge, MA: MIT
Press.

Goldstein, H. (2003). Multilevel statistical models (3rd ed.).

Good, I. J. (1980). Some history of the hierarchical Bayesian methodology. In J. M. Bernardo,
M. H. DeGroot, D. V. Lindley, & A. F. M. Smith (Eds.), Bayesian statistics (pp. 489–519).
Valencia: Valencia University Press.

Gopnik, A., & Meltzoff, A. N. (1997). Words, thoughts, and theories. Cambridge, MA: MIT Press.

Gopnik, A., & Tenenbaum, J. B. (in press). Bayesian networks, Bayesian learning, and cognitive
development. Developmental Science.

Griffiths, T. L. (2005). Causes, coincidences, and theories. Unpublished doctoral dissertation,
Stanford University.

Griffiths, T. L., Baraff, E. R., & Tenenbaum, J. B. (2004). Using physical theories to infer hidden
causal structure. In K. Forbus, D. Gentner, & T. Regier (Eds.), Proceedings of the 26th annual
meeting of the cognitive science society (p. 446-451). Mahwah, NJ: Erlbaum.



BAYESIAN MODELS 46

Griffiths, T. L., & Ghahramani, Z. (2005). Infinite latent feature models and the Indian buffet
process (Tech. Rep. No. 2005-001). Gatsby Computational Neuroscience Unit.

Griffiths, T. L., & Steyvers, M. (2002). A probabilistic approach to semantic representation. In Pro-
ceedings of the Twenty-Fourth Annual Conference of the Cognitive Science Society. Hillsdale,
NJ: Erlbaum.

Griffiths, T. L., & Steyvers, M. (2003). Prediction and semantic association. In Neural information
processing systems 15. Cambridge, MA: MIT Press.

Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National
Academy of Science, 101, 5228-5235.

Griffiths, T. L., Steyvers, M., Blei, D. M., & Tenenbaum, J. B. (2005). Integrating topics and syntax.
In Advances in Neural Information Processing Systems 17. Cambridge, MA: MIT Press.

Griffiths, T. L., Steyvers, M., & Tenenbaum, J. B. (in press). Topics in semantic association.
Psychological Review.

Griffiths, T. L., & Tenenbaum, J. B. (2005). Structure and strength in causal induction. Cognitive
Psychology, 51, 354-384.

Griffiths, T. L., & Tenenbaum, J. B. (2007a). From mere coincidences to meaningful discoveries.
Cognition, 103, 180-226.

Griffiths, T. L., & Tenenbaum, J. B. (2007b). Two proposals for causal grammars. In A. Gopnik &
L. Schulz (Eds.), Causal learning: Psychology, philosophy, and computation. Oxford: Oxford
University Press.

Hacking, I. (1975). The emergence of probability. Cambridge: Cambridg University Press.

Hagmayer, Y., Sloman, S. A., Lagnado, D. A., & Waldmann, M. R. (in press). Causal reasoning
through intervention. In Causal learning: Psychology, philosophy, and computation. Oxford:
Oxford University Press.

Hastings, W. K. (1970). Monte Carlo methods using Markov chains and their applications.
Biometrika, 57, 97-109.

Heckerman, D. (1998). A tutorial on learning with Bayesian networks. In M. I. Jordan (Ed.),
Learning in graphical models (p. 301-354). Cambridge, MA: MIT Press.

Heibeck, T., & Markman, E. (1987). Word learning in children: an examination of fast mapping.
Child Development, 58, 1021–1024.

Hofmann, T. (1999). Probablistic latent semantic indexing. In Proceedings of the Twenty-Second
Annual International SIGIR Conference.

Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees.
Bioinformatics, 17 (8), 754-755.

Jeffreys, W. H., & Berger, J. O. (1992). Ockham’s razor and Bayesian analysis. American Scientist,
80 (1), 64-72.

Jenkins, H. M., & Ward, W. C. (1965). Judgment of contingency between responses and outcomes.
Psychological Monographs, 79.

Jurafsky, D., & Martin, J. H. (2000). Speech and language processing. Upper Saddle River, NJ:
Prentice Hall.

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association,
90, 773-795.



BAYESIAN MODELS 47

Kemp, C., Perfors, A., & Tenenbaum, J. B. (2004). Learning domain structures. In Proceedings of
the 26th Annual Conference of the Cognitive Science Society. Hillsdale, NJ: Erlbaum.

Kemp, C., Perfors, A., & Tenenbaum, J. B. (in press). Learning overhypotheses with hierarchical
bayesian models. Developmental Science.

Kemp, C., & Tenenbaum, J. B. (2003). Theory-based induction. In Proceedings of the Twenty-Fifth
Annual Conference of the Cognitive Science Society.

Korb, K., & Nicholson, A. (2003). Bayesian artificial intelligence. Boca Raton, FL: Chapman and
Hall/CRC.

Kording, K. P., & Wolpert, D. M. (2006). Bayesian decision theory in sensorimotor control. Trends
in Cognitive Sciences, 10, 319-326.

Lagnado, D., & Sloman, S. A. (2004). The advantage of timely intervention. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 30, 856-876.

Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: the Latent Semantic Anal-
ysis theory of acquisition, induction, and representation of knowledge. Psychological Review,
104, 211-240.

Lee, M. D. (2006). A hierarchical Bayesian model of human decision-making on an optimal stopping
problem. Cognitive Science, 30, 555–580.

Lund, K., & Burgess, C. (1996). Producing high-dimensional semantic spaces from lexical co-
occurrence. Behavior Research Methods, Instrumentation, and Computers, 28, 203-208.

Mackay, D. J. C. (2003). Information theory, inference, and learning algorithms. Cambridge:
Cambridge University Press.

Manning, C., & Schütze, H. (1999). Foundations of statistical natural language processing. Cam-
bridge, MA: MIT Press.

Mansinghka, V. K., Kemp, C., Tenenbaum, J. B., & Griffiths, T. L. (2006). Structured priors
for structure learning. In Proceedings of the 22nd Conference on Uncertainty in Artificial
Intelligence (UAI).

Marr, D. (1982). Vision. San Francisco, CA: W. H. Freeman.

Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. Psychological
Review, 85, 207-238.

Metropolis, A. W., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953).
Equations of state calculations by fast computing machines. Journal of Chemical Physics, 21,
1087-1092.

Minka, T., & Lafferty, J. (2002). Expectation-Propagation for the generative aspect model. In Pro-
ceedings of the 18th Conference on Uncertainty in Artificial Intelligence (UAI). San Francisco,
CA: Morgan Kaufmann.

Myung, I. J., Forster, M. R., & Browne, M. W. (2000). Model selection [special issue]. Journal of
Mathematical Psychology, 44.

Myung, I. J., & Pitt, M. A. (1997). Applying Occam’s razor in modeling cognition: A Bayesian
approach. Psychonomic Bulletin and Review, 4, 79-95.

Neal, R. M. (1992). Connectionist learning of belief networks. Artificial Intelligence, 56, 71-113.

Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods (Tech. Rep.
No. CRG-TR-93-1). University of Toronto.



BAYESIAN MODELS 48

Neal, R. M. (1998). Markov chain sampling methods for Dirichlet process mixture models (Tech.
Rep. No. 9815). Department of Statistics, University of Toronto.

Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (1998). The university of south florida word
association, rhyme, and word fragment norms. (http://w3.usf.edu/FreeAssociation/)

Newman, M. E. J., & Barkema, G. T. (1999). Monte carlo methods in statistical physics. Oxford:
Clarendon Press.

Nisbett, R. E., Krantz, D. H., Jepson, C., & Kunda, Z. (1983). The use of statistical heuristics in
everyday inductive reasoning. Psychological Review, 90 (4), 339–363.

Norris, J. R. (1997). Markov chains. Cambridge, UK: Cambridge University Press.

Nosofsky, R. M. (1986). Attention, similarity, and the identification-categorization relationship.
Journal of Experimental Psychology: General, 115, 39-57.

Nosofsky, R. M. (1998). Optimal performance and exemplar models of classification. In M. Oaksford
& N. Chater (Eds.), Rational models of cognition (p. 218-247). Oxford: Oxford University Press.

Oaksford, M., & Chater, N. (2001). The probabilistic approach to human reasoning. Trends in
Cognitive Sciences, 5, 349-357.

Osherson, D. N., Smith, E. E., Wilkie, O., Lopez, A., & Shafir, E. (1990). Category-based induction.
Psychological Review, 97 (2), 185-200.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems. San Francisco, CA: Morgan Kauf-
mann.

Pearl, J. (2000). Causality: Models, reasoning and inference. Cambridge, UK: Cambridge University
Press.

Pitman, J. (1993). Probability. New York: Springer-Verlag.

Reed, S. K. (1972). Pattern recognition and categorization. Cognitive Psychology, 3, 393-407.

Rice, J. A. (1995). Mathematical statistics and data analysis (2nd ed.). Belmont, CA: Duxbury.

Rips, L. J. (1975). Inductive judgments about natural categories. Journal of Verbal Learning and
Verbal Behavior, 14, 665-681.

Russell, S. J., & Norvig, P. (2002). Artificial intelligence: A modern approach (2nd ed.). Englewood
Cliffs, NJ: Prentice Hall.

Sloman, S. (2005). Causal models: How people think about the world and its alternatives. Oxford:
Oxford University Press.

Smith, L. B., Jones, S. S., Landau, B., Gershkoff-Stowe, L., & Samuelson, L. (2002). Object name
learning provides on-the-job training for attention. Psychological Science, 13 (1), 13–19.

Spirtes, P., Glymour, C., & Schienes, R. (1993). Causation prediction and search. New York:
Springer-Verlag.

Steyvers, M., Griffiths, T. L., & Dennis, S. (2006). Probabilistic inference in human semantic
memory. Trends in Cognitive Sciences, 10, 327-334.

Steyvers, M., Tenenbaum, J. B., Wagenmakers, E. J., & Blum, B. (2003). Inferring causal networks
from observations and interventions. Cognitive Science, 27, 453-489.

Tenenbaum, J. B., & Griffiths, T. L. (2001). Structure learning in human causal induction. In
T. Leen, T. Dietterich, & V. Tresp (Eds.), Advances in Neural Information Processing Systems
13 (p. 59-65). Cambridge, MA: MIT Press.



BAYESIAN MODELS 49

Tenenbaum, J. B., & Griffiths, T. L. (2003). Theory-based causal induction. In S. Becker, S. Thrun,
& K. Obermayer (Eds.), Advances in Neural Information Processing Systems 15 (p. 35-42).
Cambridge, MA: MIT Press.

Tenenbaum, J. B., Griffiths, T. L., & Kemp, C. (2006). Theory-based Bayesian models of inductive
learning and reasoning. Trends in Cognitive Science, 10, 309-318.

Tenenbaum, J. B., Griffiths, T. L., & Niyogi, S. (2007). Intuitive theories as grammars for causal
inference. In A. Gopnik & L. Schulz (Eds.), Causal learning: Psychology, philosophy, and
computation. Oxford: Oxford University Press.

Tenenbaum, J. B., & Niyogi, S. (2003). Learning causal laws. In R. Alterman & D. Kirsh (Eds.),
Proceedings of the 25th annual meeting of the cognitive science society. Hillsdale, NJ: Erlbaum.

Wellman, H. M., & Gelman, S. A. (1992). Cognitive development: Foundational theories of core
domains. Annual Review of Psychology, 43, 337-375.

Xu, F., & Tenenbaum, J. B. (in press). Word learning as bayesian inference. Psychological Review.

Yuille, A., & Kersten, D. (2006). Vision as Bayesian inference: analysis by synthesis? Trends in
Cognitive Sciences, 10, 301-308.


